筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
“mlops (machine learning operations)” 的结果
- 状态:免费试用
Duke University
您将获得的技能: 数据管道, Python 程序设计, MLOps(机器学习 Operator), 云计算, GitHub, Pandas(Python 软件包), 数据操作, 应用程序部署, CI/CD, 探索性数据分析, AWS SageMaker, 数据管理, Data Management, 负责任的人工智能, Devops, 大数据, 微软 Azure, 机器学习, 数据分析, NumPy, 集装箱化
- 状态:新
您将获得的技能: MLOps (Machine Learning Operations), AWS SageMaker, CI/CD, DevOps, Data Processing, Data Management, Machine Learning, Predictive Modeling, Automation, Data Pipelines, Applied Machine Learning, Continuous Monitoring
- 状态:新状态:免费试用
Coursera
您将获得的技能: Supervised Learning, Unsupervised Learning, Time Series Analysis and Forecasting, Applied Machine Learning, Machine Learning Algorithms, Feature Engineering, Dimensionality Reduction, Machine Learning, Predictive Modeling, Predictive Analytics, Scikit Learn (Machine Learning Library), Forecasting, Data Processing, Anomaly Detection, Data Manipulation, Regression Analysis, Statistical Modeling, Data Transformation, Data Cleansing
DeepLearning.AI
您将获得的技能: 数据管道, 数据驱动的决策制定, MLOps(机器学习 Operator), 应用程序部署, 持续部署, 持续监测, 数据质量, 功能工程, 应用机器学习, 机器学习, 软件开发生命周期, 数据验证
- 状态:新状态:免费试用
您将获得的技能: Natural Language Processing, Deep Learning, Large Language Modeling, Text Mining, Semantic Web, Generative AI, PyTorch (Machine Learning Library), Artificial Neural Networks, Python Programming, Cryptography, Generative Model Architectures, Applied Machine Learning, Machine Learning Methods, Unsupervised Learning, Probability Distribution, Machine Learning Algorithms, Algorithms
- 状态:免费试用
您将获得的技能: MLOps (Machine Learning Operations), Google Cloud Platform, Cloud Management, DevOps, Continuous Deployment, CI/CD, Machine Learning, Automation, Data Pipelines, Version Control
是什么让您今天来到 Coursera?
- 状态:免费试用
多位教师
您将获得的技能: Python 程序设计, 分类与回归树 (CART), 决策树学习, 监督学习, 数据伦理, 人工智能, 预测建模, 人工智能和机器学习(AI/ML), 随机森林算法, 应用机器学习, 机器学习, 负责任的人工智能, 功能工程, Jupyter, 无监督学习, 张力流, Scikit-learn (机器学习库), NumPy, 深度学习, 强化学习
- 状态:免费试用状态:人工智能技能
University of Pennsylvania
您将获得的技能: Statistical Machine Learning, PyTorch (Machine Learning Library), Statistical Methods, Probability, Probability & Statistics, Sampling (Statistics), Deep Learning, Probability Distribution, Python Programming, Supervised Learning, Statistics, Machine Learning Methods, Machine Learning, Regression Analysis, Data Processing, Agentic systems, Data Science, Artificial Intelligence, Artificial Neural Networks, Algorithms
- 状态:新状态:免费试用
您将获得的技能: MLOps (Machine Learning Operations), AWS SageMaker, Artificial Intelligence and Machine Learning (AI/ML), Amazon Web Services, Predictive Modeling, Applied Machine Learning, Data Processing, Regression Analysis, Machine Learning, Supervised Learning, Feature Engineering, Data Cleansing, Continuous Deployment, Unsupervised Learning
- 状态:免费试用
您将获得的技能: Feature Engineering, Applied Machine Learning, Advanced Analytics, Machine Learning, Unsupervised Learning, Workflow Management, Data Ethics, Supervised Learning, Data Validation, Classification And Regression Tree (CART), Random Forest Algorithm, Decision Tree Learning, Python Programming, Performance Tuning
- 状态:免费试用
Google Cloud
您将获得的技能: Natural Language Processing, MLOps (Machine Learning Operations), Tensorflow, Large Language Modeling, Reinforcement Learning, Computer Vision, Google Cloud Platform, Keras (Neural Network Library), Systems Design, Image Analysis, AI Personalization, Hybrid Cloud Computing, Applied Machine Learning, Systems Architecture, Performance Tuning, Artificial Intelligence and Machine Learning (AI/ML), Deep Learning, Artificial Neural Networks, Machine Learning, Machine Learning Algorithms
- 状态:免费试用
Duke University
您将获得的技能: Python 程序设计, 面向对象编程(OOP), 命令行界面, MLOps(机器学习 Operator), 数据操作, 应用编程接口 (API), Pandas(Python 软件包), 数据导入/导出, 测试自动化, NumPy, 数据结构, 计划发展, 调试, 数值分析, 软件测试, 机器学习, 脚本
与 mlops (machine learning operations) 相关的搜索
总之,以下是 10 最受欢迎的 mlops (machine learning operations) 课程
- MLOps | 机器学习运营: Duke University
- Learn MLOps for Machine Learning: Pearson
- Foundations of Machine Learning: Coursera
- 生产中的 Machine Learning: DeepLearning.AI
- Modern Natural Language Processing: Packt
- Machine Learning Operations (MLOps): Getting Started: Google Cloud
- 机器学习: DeepLearning.AI
- AI and Machine Learning Essentials with Python: University of Pennsylvania
- AWS: Machine Learning & MLOps Foundations: Whizlabs
- The Nuts and Bolts of Machine Learning: Google