EIT Digital
AI for Cybersecurity
EIT Digital

AI for Cybersecurity

Darius Bufnea
Laura Dioșan
Adrian Sterca

位教师:Darius Bufnea

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有4个模块

Welcome to the introductory part of the AI and Cybersecurity course! During the 5 video lectures and 2 readings of this module you will find various definitions of the Artificial Intelligence, the evolution of this domain and the classification of the AI algorithms in search-based algorithms and intelligent systems. The domains where AI is successfully used are presented, with focus on the use of AI in cybersecurity related tasks (e.g.: network analysis, intrusion detection, malicious web link detection, anomaly detection or malware classification ). Afterwards, the basic concepts of cybersecurity will be introduced, and the classification of security threats at endpoint level or internet level. You will discover types of cybersecurity threats and how they can be defended.

涵盖的内容

12个视频7篇阅读材料7个作业1个讨论话题

Welcome to the second module of the AI for Cybersecurity course. This module consists of five lessons that explore different AI techniques and their applications in cybersecurity. It begins with an introduction to Machine Learning (ML) and its three basic types. The second lesson discusses three key cybersecurity tasks and explains how ML can be applied to address them. In the third lesson, you will follow a practical example of implementing and evaluating a malware detection system using two ML models: Decision Trees and Random Forests. The fourth lesson introduces fundamental concepts of deep learning (DL) and its applications in cybersecurity. Finally, the module concludes with an overview of Natural Language Processing (NLP) and how it can be used for cybersecurity-related tasks.

涵盖的内容

31个视频2篇阅读材料10个作业

This module explores how AI techniques are applied to detect and mitigate online threats. It begins with an overview of malicious web links, explaining how they redirect users, run harmful code, and spread misinformation like fake news and phishing content. Detection methods are categorized into dynamic (e.g., sandboxing, honeypots) and static (e.g., URL analysis, blacklists, machine learning models). The module also details how URLs can be analyzed through lexical, host-based, and social media features. A special focus is given to Domain Generation Algorithms (DGAs), which malware uses to create deceptive domain names. Detecting DGAs is challenging and involves either manual feature extraction or automated learning methods. Another topic of this module is detecting fake news using deep learning modules. Finally, the presentation briefly talks about clickbait detection. Real-world case studies and research-backed solutions are presented throughout. By the end, learners are equipped to recognize key cyber threats and understand the AI models used to counter them.

涵盖的内容

5个视频1篇阅读材料2个作业

This final module explores the ethical challenges and legal frameworks surrounding the use of AI in cybersecurity. Key concepts such as safety vs. security, risk management, and the balance between privacy and protection will be discussed. We will introduce the AI4People framework - autonomy, non-maleficence, beneficence, justice, and explainability - and examine its application to real-world cyber threats. The module also covers key regulations such as the EU AI Act, NIS2, the Cyber Resilience Act, and DORA, along with ethical guidelines from ACM, IEEE, and ISSA. Finally, we'll look at future trends, including open-source collaboration, ethical hacking, and global cooperation in securing AI systems. By the end, learners will understand the ethical and regulatory landscape and be prepared for the evolving challenges of AI in cybersecurity.

涵盖的内容

3个视频2篇阅读材料2个作业

位教师

Darius Bufnea
EIT Digital
1 门课程171 名学生

提供方

EIT Digital

从 Algorithms 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题