AWS: ML Workflows with SageMaker, Storage & Security is the fourth course in the Exam Prep (MLA-C01): AWS Certified Machine Learning Engineer – Associate Specialization. This course enables learners to design secure, scalable, and efficient machine learning workflows on AWS, focusing on key pillars: data storage, model development, and security.


AWS: ML Workflows with SageMaker, Storage & Security
包含在 中
您将学到什么
Compare AWS storage options and select the appropriate solution for ML data management.
Explore the end-to-end capabilities of Amazon SageMaker for building and managing ML workflows.
Secure sensitive data using AWS KMS and Secrets Manager for encryption and credential management.
您将获得的技能
要了解的详细信息

添加到您的领英档案
September 2025
8 项作业
了解顶级公司的员工如何掌握热门技能

积累特定领域的专业知识
- 向行业专家学习新概念
- 获得对主题或工具的基础理解
- 通过实践项目培养工作相关技能
- 获得可共享的职业证书

该课程共有4个模块
Welcome to Week 1 of the AWS: End-to-End ML Workflows with SageMaker, Storage & Security course. This week, you’ll explore the core data infrastructure and streaming services that power scalable machine learning workflows on AWS. We’ll start by reviewing storage options such as Amazon S3, EBS, EFS, and FSx for NetApp ONTAP, and discuss how to select the right storage service based on performance and ML use case requirements. Next, you’ll examine database options for ML, followed by an in-depth look at real-time data ingestion and streaming using services like Amazon Kinesis, Amazon Managed Streaming for Apache Kafka, and Amazon Managed Service for Apache Flink. You’ll also complete a hands-on activity where you’ll create a data streaming pipeline using Kinesis Streams, Amazon S3, and AWS Lambda, enabling real-time data collection and processing for machine learning applications.
涵盖的内容
10个视频2篇阅读材料2个作业
Welcome to Week 2 of the AWS: Model Training, Optimization & Deployment course. This week, you'll explore the broader capabilities of Amazon SageMaker and how it supports the full machine learning lifecycle. We’ll begin with an introduction and demo of SageMaker, highlighting its core services and development environment. You’ll then take a deeper dive into SageMaker Data Wrangler for efficient data preparation, followed by a detailed walkthrough of the SageMaker Feature Store, which enables consistent feature reuse across training and inference. As we move forward, you'll learn how to monitor model performance using SageMaker Model Monitor, helping ensure reliability and detect data drift in production. We’ll wrap up the week by using SageMaker JumpStart to quickly deploy pre-built models and solution templates, accelerating your ML experimentation and deployment process.
涵盖的内容
6个视频1篇阅读材料2个作业
Welcome to Week 3 of the AWS: End-to-End ML Workflows with SageMaker, Storage & Security course. This week, you'll focus on securing and governing your machine learning workloads on AWS. We’ll start by exploring AWS Key Management Service (KMS) and AWS Secrets Manager, which help you securely store, manage, and encrypt sensitive data such as API keys and credentials. Next, we’ll cover AWS WAF and AWS Shield, two essential services for protecting ML applications from web threats and Distributed Denial of Service (DDoS) attacks. You’ll also learn how to use Amazon Macie to detect and protect sensitive data within S3 buckets, ensuring compliance with data privacy standards. We’ll wrap up the week with AWS Trusted Advisor, a powerful tool that provides real-time recommendations to improve security, performance, and fault tolerance across your AWS environment—enabling you to maintain a secure and cost-efficient ML infrastructure.
涵盖的内容
6个视频1篇阅读材料2个作业
Welcome to Week 4 of the AWS: End-to-End ML Workflows with SageMaker, Storage & Security course. This week, you’ll explore tools that help you monitor, visualize, and optimize your machine learning workflows in production. We’ll begin with Amazon QuickSight, where you’ll learn how to analyze and visualize ML outputs for better business insights. You’ll then dive into SageMaker Model Monitor to detect anomalies in deployed models and ensure ongoing performance. To strengthen observability, you’ll work with AWS X-Ray and CloudWatch Logs to trace model behavior, debug issues, and gain insights into operational metrics. We’ll wrap up by using AWS Cost Explorer and Trusted Advisor to monitor usage and cost, and explore SageMaker Inference Recommender to choose optimal instance types for model deployment—ensuring cost-effective and high-performance inference at scale.
涵盖的内容
6个视频3篇阅读材料2个作业
获得职业证书
将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。
位教师

提供方
从 Algorithms 浏览更多内容
- 状态:免费试用
Duke University
- 状态:免费试用
- 状态:免费试用
- 状态:免费试用
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,