Whizlabs
AWS: ML Workflows with SageMaker, Storage & Security
Whizlabs

AWS: ML Workflows with SageMaker, Storage & Security

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Compare AWS storage options and select the appropriate solution for ML data management.

  • Explore the end-to-end capabilities of Amazon SageMaker for building and managing ML workflows.

  • Secure sensitive data using AWS KMS and Secrets Manager for encryption and credential management.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

September 2025

作业

8 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Exam Prep MLA-C01: AWS Machine Learning Engineer Assocaite 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

Welcome to Week 1 of the AWS: End-to-End ML Workflows with SageMaker, Storage & Security course. This week, you’ll explore the core data infrastructure and streaming services that power scalable machine learning workflows on AWS. We’ll start by reviewing storage options such as Amazon S3, EBS, EFS, and FSx for NetApp ONTAP, and discuss how to select the right storage service based on performance and ML use case requirements. Next, you’ll examine database options for ML, followed by an in-depth look at real-time data ingestion and streaming using services like Amazon Kinesis, Amazon Managed Streaming for Apache Kafka, and Amazon Managed Service for Apache Flink. You’ll also complete a hands-on activity where you’ll create a data streaming pipeline using Kinesis Streams, Amazon S3, and AWS Lambda, enabling real-time data collection and processing for machine learning applications.

涵盖的内容

10个视频2篇阅读材料2个作业

Welcome to Week 2 of the AWS: Model Training, Optimization & Deployment course. This week, you'll explore the broader capabilities of Amazon SageMaker and how it supports the full machine learning lifecycle. We’ll begin with an introduction and demo of SageMaker, highlighting its core services and development environment. You’ll then take a deeper dive into SageMaker Data Wrangler for efficient data preparation, followed by a detailed walkthrough of the SageMaker Feature Store, which enables consistent feature reuse across training and inference. As we move forward, you'll learn how to monitor model performance using SageMaker Model Monitor, helping ensure reliability and detect data drift in production. We’ll wrap up the week by using SageMaker JumpStart to quickly deploy pre-built models and solution templates, accelerating your ML experimentation and deployment process.

涵盖的内容

6个视频1篇阅读材料2个作业

Welcome to Week 3 of the AWS: End-to-End ML Workflows with SageMaker, Storage & Security course. This week, you'll focus on securing and governing your machine learning workloads on AWS. We’ll start by exploring AWS Key Management Service (KMS) and AWS Secrets Manager, which help you securely store, manage, and encrypt sensitive data such as API keys and credentials. Next, we’ll cover AWS WAF and AWS Shield, two essential services for protecting ML applications from web threats and Distributed Denial of Service (DDoS) attacks. You’ll also learn how to use Amazon Macie to detect and protect sensitive data within S3 buckets, ensuring compliance with data privacy standards. We’ll wrap up the week with AWS Trusted Advisor, a powerful tool that provides real-time recommendations to improve security, performance, and fault tolerance across your AWS environment—enabling you to maintain a secure and cost-efficient ML infrastructure.

涵盖的内容

6个视频1篇阅读材料2个作业

Welcome to Week 4 of the AWS: End-to-End ML Workflows with SageMaker, Storage & Security course. This week, you’ll explore tools that help you monitor, visualize, and optimize your machine learning workflows in production. We’ll begin with Amazon QuickSight, where you’ll learn how to analyze and visualize ML outputs for better business insights. You’ll then dive into SageMaker Model Monitor to detect anomalies in deployed models and ensure ongoing performance. To strengthen observability, you’ll work with AWS X-Ray and CloudWatch Logs to trace model behavior, debug issues, and gain insights into operational metrics. We’ll wrap up by using AWS Cost Explorer and Trusted Advisor to monitor usage and cost, and explore SageMaker Inference Recommender to choose optimal instance types for model deployment—ensuring cost-effective and high-performance inference at scale.

涵盖的内容

6个视频3篇阅读材料2个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Whizlabs Instructor
Whizlabs
132 门课程86,002 名学生

提供方

Whizlabs

从 Algorithms 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题