Case Western Reserve University
Basic Principles of Geostatistical Geospatial Modeling
Case Western Reserve University

Basic Principles of Geostatistical Geospatial Modeling

Jeffrey Yarus

位教师:Jeffrey Yarus

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
初级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
初级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Practical Geospatial Geostatistical Modeling 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有5个模块

In this introductory module, you'll meet your instructor and discover the power of geostatistical modeling in fields like environmental science and mining. We'll outline the course structure, covering key topics, practical applications, and progress measurement to ensure your success. Let's get started!

涵盖的内容

1个视频7篇阅读材料

In this module, we will explore the fundamental steps and purposes of Exploratory Data Analysis (EDA). EDA is essential for summarizing the main characteristics of data and uncovering patterns, often using visual methods. This module will equip you with the skills to construct univariate and bivariate graphic summaries, use univariate and bivariate statistics to characterize data distributions and relationships, and create data transforms for multivariate statistical and geostatistical methods. Imagine you are a geologist analyzing soil samples from different locations to determine mineral content. EDA will help you visualize the distribution of mineral concentrations, identify any outliers or missing data, and understand the relationships between different variables. By the end of this module, you will have a solid foundation in EDA, enabling you to prepare and analyze data effectively for spatial modeling and other advanced analyses.

涵盖的内容

22个视频5篇阅读材料5个作业

In this module, we will explore the essential concepts and techniques of spatial modeling in geostatistical analysis. Spatial modeling is crucial for understanding and predicting spatial patterns and relationships in data. This module will equip you with the skills to construct various types of variograms and apply them in spatial analysis. Throughout this module, you will learn to explain the purpose and necessity of spatial modeling, construct experimental omnidirectional and directional variograms, and develop nested variogram models. By the end of this module, you will have a comprehensive understanding of spatial modeling, enabling you to perform geostatistical analyses with confidence.

涵盖的内容

13个视频5篇阅读材料4个作业

In this module, we will explore the powerful geostatistical technique of Kriging, which offers significant advantages over other interpolation methods. Kriging is essential for making accurate spatial predictions and understanding spatial variability. Throughout this module, you will learn to explain the rationale of Kriging, perform co-located co-kriging, conduct cross-validation on kriged maps or volumes, construct error variance maps, and develop variogram models for directional regionalized variables. Kriging has numerous real-world applications in geology, such as estimating mineral reserves, mapping subsurface structures, and predicting the distribution of geological features. By the end of this module, you will have a comprehensive understanding of Kriging, enabling you to apply this technique effectively in your geostatistical analyses and make informed decisions in geological studies.

涵盖的内容

13个视频1篇阅读材料4个作业

In this final module of the course, we will explore the advanced techniques of conditional simulation and post-processing in geostatistical analysis. These methods are essential for understanding and managing spatial uncertainty in geological data. Throughout this module, you will learn to explain the difference between kriging and conditional simulation, perform normal score transforms, construct conditionally simulated maps and volumes, and create multiple realizations of simulated variables. Additionally, you will delve into post-processing techniques to assess and refine stochastically simulated geostatistical models. By the end of this module, you will have a comprehensive understanding of simulation and post-processing, enabling you to apply these techniques effectively in geological studies and make informed decisions based on spatial uncertainty.

涵盖的内容

11个视频3篇阅读材料5个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Jeffrey Yarus
Case Western Reserve University
3 门课程566 名学生

提供方

从 Probability and Statistics 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题