Johns Hopkins University
Introduction to AI: Key Concepts and Applications
Johns Hopkins University

Introduction to AI: Key Concepts and Applications

Ian McCulloh

位教师:Ian McCulloh

3,104 人已注册

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
4.8

(20 条评论)

中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
4.8

(20 条评论)

中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Understand core AI and ML concepts, key vocabulary, and the R.O.A.D. Framework for effective AI project management and implementation.

  • Evaluate machine learning models using performance metrics and understand the tradeoffs in algorithm selection and optimization.

  • Analyze AI algorithms like SVM, Decision Trees, and Neural Networks, identifying their strengths, weaknesses, and practical applications.

  • Assess data quality, calculate inter-annotator agreement, and address resource and performance tradeoffs in AI and ML systems.

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

15 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有6个模块

This course provides a comprehensive introduction to key concepts in artificial intelligence (AI) and machine learning (ML). Learners will explore essential vocabulary, the R.O.A.D. Framework, performance evaluation, and algorithm tradeoffs. Topics include data quality, inter-annotator agreement, and the strengths and weaknesses of AI methods. By the end, learners will be equipped with the foundational knowledge to navigate and assess AI and ML systems effectively.

涵盖的内容

1篇阅读材料1个插件

This module provides an introduction to artificial intelligence (AI). It does not require any prior knowledge of AI and is suitable for briefing managerial, and non-technical leaders to improve knowledge, expectations, and communication for AI projects.

涵盖的内容

6个视频4篇阅读材料3个作业

This module covers the statistical foundations of machine learning and the common metrics for evaluating machine learning and artificial intelligence performance.

涵盖的内容

6个视频2篇阅读材料3个作业

This module introduces the most common algorithms used in AI and machine learning, including support vector machines, Naïve Bayes, decision trees, random forest, and neural networks. We will discuss the strengths and weaknesses of these algorithms for different classes of problems.

涵盖的内容

8个视频2篇阅读材料3个作业

This module explores data types (nominal, ordinal, categorical) and the challenges of data labeling, including human cognitive limits and reference issues. A key focus is inter-annotator agreement—a method to measure labeling consistency, highlighting biases and inefficiencies in human and machine processes. Consistent labeling, often more impactful than advanced algorithms, is crucial for responsible AI.

涵盖的内容

9个视频2篇阅读材料3个作业

This module introduces the most common resource considerations in AI, specifically memory, computational tradeoffs, query expressiveness, and algorithm performance.

涵盖的内容

10个视频2篇阅读材料3个作业

位教师

授课教师评分
4.8 (6个评价)
Ian McCulloh
Johns Hopkins University
17 门课程16,198 名学生

提供方

从 Data Management 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'

学生评论

4.8

20 条评论

  • 5 stars

    80%

  • 4 stars

    20%

  • 3 stars

    0%

  • 2 stars

    0%

  • 1 star

    0%

显示 3/20 个

AP
5

已于 Feb 20, 2025审阅

RS
4

已于 Apr 21, 2025审阅

Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题