이 강의는 CU 볼더 대학교의 데이터 과학 석사(MS-DS) 학위 과정의 일부로써 학점 인정이 가능하며 Coursera 플랫폼을 통해 제공됩니다. MS-DS는 CU 볼더 대학교의 응용 수학, 컴퓨터 과학, 정보 과학 및 기타 여러 학과 교수진이 모여 만든 학제간 학위 과정입니다. MS-DS는 능력에 따라 입학이 허가되고 지원 절차가 없기 때문에 컴퓨터 과학, 정보 과학, 수학 및 통계학 분야에 대해 광범위한 학부 과정을 이수하고 전문 경험이 풍부한 사람에게 이상적인 과정입니다. MS-DS 과정에 대한 정보는 링크(https://hua.dididi.sbs/degrees/master-of-science-data-science-boulder)를 통해 확인하실 수 있습니다.


您将学到什么
수강생은 컴퓨터 비전이 무엇인지 설명하고 컴퓨터 비전 과제의 예를 들 수 있습니다.
수강생은 컴퓨터 비전 과제에 대한 알고리즘 솔루션의 배경이 되는 프로세스와 그 장단점을 설명할 수 있습니다.
수강생은 직접 최신 머신 러닝 툴과 파이썬 라이브러리를 사용할 수 있습니다.
您将获得的技能
要了解的详细信息
了解顶级公司的员工如何掌握热门技能

该课程共有5个模块
이번 단원에서는 컴퓨터 비전 분야를 알아봅니다. 컴퓨터 비전은 이미지에서 정보를 추출하는 것을 목표로 합니다. 컴퓨터 비전 과제의 주요 범주를 살펴본 뒤, 각 범주에 해당하는 응용 사례를 살펴보겠습니다. 머신 러닝 및 딥 러닝 기법의 도입이 컴퓨터 비전 분야에 어떤 영향을 주었는지 알아보겠습니다.
涵盖的内容
4个视频12篇阅读材料1个作业1个讨论话题
이번 단원에서는 고전적 컴퓨터 비전 툴 및 기법에 대해 알아봅니다. 합성곱 연산, 선형 필터, 그리고 이미지 특징을 감지하는 알고리즘을 알아봅니다.
涵盖的内容
5个视频10篇阅读材料1个作业
이번 단원에서는 첫 번째로 고전 컴퓨터 비전에서의 객체 인식의 문제점을 복습합니다. 다음으로 고전 컴퓨터 비전 파이프라인을 통해 객체 인식 및 이미지 분류를 수행하는 단계를 살펴봅니다.
涵盖的内容
3个视频2篇阅读材料1个作业
이번 단원에서는 신경망을 사용한 이미지 분류 파이프라인이 고전 컴퓨터 비전 툴과 어떻게 다른지 비교해 보겠습니다. 그 후 신경망의 기본적인 요소에 대해 복습하겠습니다. 텐서 플로우 튜토리얼을 통해 이미지 분류 예측을 위해 신경망을 구축, 훈련 및 사용하는 방법을 실습하고 마무리 하겠습니다.
涵盖的内容
4个视频5篇阅读材料1次同伴评审1个非评分实验室
이번 단원에서는 합성곱 신경망의 구성 요소를 알아보겠습니다. 심층 신경망을 설명하는 매개변수와 초매개변수에 대해 배우고 이들이 어떻게 딥 러닝 모델의 정확도를 개선해주는지 알아보겠습니다. 텐서 플로우 튜토리얼을 통해 이미지를 분류하는 딥 신경망 구축, 훈련 및 사용을 실습하고 마무리 하겠습니다.
涵盖的内容
6个视频10篇阅读材料1个作业1次同伴评审1个非评分实验室
位教师

人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,
¹ 本课程的部分作业采用 AI 评分。对于这些作业,将根据 Coursera 隐私声明使用您的数据。