University of Pennsylvania
Deep Learning Essentials
University of Pennsylvania

Deep Learning Essentials

Chris Callison-Burch
Pratik Chaudhari

位教师:Chris Callison-Burch

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Understand the history and context of the deep learning field, and explore what "intelligence" really means.

  • Explore deep learning models like the perceptron, neural networks and backpropagation, and study the techniques that drive them.

  • Code a project using Python where you will preprocess data and use your data to train a Support Vector Machine (SVM.)

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

12 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 AI and Machine Learning Essentials with Python 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

In this module, we'll first peek through history, talk about the different ways in which people have attempted to build artificial intelligences in the past and explore what intelligence is made up of. Then, we'll start our investigation into an early model called the perceptron.

涵盖的内容

11个视频2篇阅读材料3个作业1个讨论话题

This module, we will continue exploring the perceptron. We'll delve into stochastic gradient descent (SGD), a fundamental optimization technique that enables the perceptron, and other models, to learn from data by iteratively updating the model's parameters to minimize errors. Afterward, we will look at kernel methods. These techniques can separate two sets of points in more complicated ways, drawing inspiration from how the human eye works.

涵盖的内容

11个视频3个作业1个编程作业

This module, we will move to exploring fully-connected networks. These networks are sophisticated models that can be thought of as a perceptron sitting on top of another perceptron, continuing in such a fashion. Each layer in a fully-connected network takes inputs from the layer below it, working to separate data points (such as the red and the blue scattered points) a little better than the one before it, and then passes it on to the next layer.

涵盖的内容

8个视频3个作业1个讨论话题

We will finish this course by looking at backpropagation, which is an algorithm to train neural networks to find the best set of weights that minimize error on the data. Backpropagation applies the chain rule from calculus to efficiently calculate gradients of the loss function with respect to the weights, enabling the model to update its weights in the opposite direction of the gradient. We'll discuss the importance of typical datasets consisting of images, sentences, and sounds, and how neural networks can learn from the spatial regularities present in such data.

涵盖的内容

8个视频1篇阅读材料3个作业1个编程作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Chris Callison-Burch
7 门课程6,761 名学生

提供方

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题