University of Colorado Boulder
Deep Learning for Natural Language Processing
University of Colorado Boulder

Deep Learning for Natural Language Processing

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
攻读学位
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
攻读学位

您将学到什么

  • Define feedforward networks, recurrent neural networks, attention, and transformers.

  • Implement and train feedforward networks, recurrent neural networks, attention, and transformers.

  • Describe the idea behind transfer learning and frequently used transfer learning algorithms.

  • Design and implement their own neural network architectures for natural language processing tasks.

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

16 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有4个模块

This first week introduces the fundamental concepts of feedforward and recurrent neural networks (RNNs), focusing on their architectures, mathematical foundations, and applications in natural language processing (NLP). We'll will begin with an exploration of feedforward networks and their role in sentence embeddings and sentiment analysis. We then progresses to RNNs, covering sequence modeling techniques such as LSTMs, GRUs, and bidirectional RNNs, along with their implementation in Python. Finally, you will examine training techniques, gaining hands-on experience in optimizing neural language models.

涵盖的内容

15个视频7篇阅读材料4个作业1个编程作业1个非评分实验室

This week we'll explore sequence-to-sequence models in natural language processing (NLP), beginning with recurrent neural network (RNN)-based architectures and the introduction of attention mechanisms for improved alignment in tasks like machine translation. The module also covers best practices for training neural networks, including regularization, optimization strategies, and efficient model training. At the end of the week, you will gain practical experience in implementing and training sequence-to-sequence models.

涵盖的内容

10个视频1篇阅读材料4个作业1个编程作业

This week explores transfer learning techniques in NLP, focusing on pretraining, finetuning, and multilingual models. You will first examine the role of pretrained language models like GPT, GPT-2, and BERT, and their challenges. We then explore multitask training and data augmentation, highlighting strategies like parameter sharing and loss weighting to improve model generalization across tasks. Finally, you will dive into crosslingual transfer learning, exploring methods like translate-train vs. translate-test, as well as zero-shot, one-shot, and few-shot learning for multilingual NLP.

涵盖的内容

17个视频4个作业1个编程作业

This final week introduces large language models (LLMs) and how they can be effectively used through techniques like prompt engineering, in-context learning, and parameter-efficient finetuning. You will explore language-and-vision models, understanding how multimodal architectures extend beyond text to integrate visual and other data modalities. We will also examine non-functional properties of LLMs, including challenges such as hallucinations, fairness, resource efficiency, privacy, and interpretability.

涵盖的内容

12个视频4个作业1个编程作业

攻读学位

课程 是 University of Colorado Boulder提供的以下学位课程的一部分。如果您被录取并注册,您已完成的课程可计入您的学位学习,您的学习进度也可随之转移。

 

位教师

Katharina von der Wense
University of Colorado Boulder
1 门课程832 名学生

提供方

从 Algorithms 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题