Engineer AI Models: Explain, Tune & Experiment prepares program and project managers to guide AI projects beyond “just working” toward being trusted, explainable, and reproducible. You’ll learn how feature engineering and hyperparameter tuning improve model performance, how explainability methods like SHAP and LIME build stakeholder confidence, and how structured experimentation ensures reliable results. Through real-world scenarios — from boosting fraud detection F1 scores, to presenting credit approval models to risk committees, to planning experiments in Jupyter — you’ll gain the skills to ask the right questions, guide technical teams, and translate complex model outputs into business impact. By the end, you’ll know how to move AI projects from black box to business-ready.
即将结束: 只需 199 美元(原价 399 美元)即可通过 Coursera Plus 学习新技能。立即节省

Engineer AI Models: Explain, Tune & Experiment
包含在 中
您将获得的技能
- Performance Improvement
- Test Engineering
- Performance Tuning
- Business Analytics
- Performance Metric
- Machine Learning Methods
- Credit Risk
- Model Evaluation
- Test Planning
- Research Design
- Fraud detection
- Performance Analysis
- Feature Engineering
- Jupyter
- Responsible AI
- Technical Communication
- Project Management
- Program Management
要了解的详细信息
了解顶级公司的员工如何掌握热门技能

积累特定领域的专业知识
- 向行业专家学习新概念
- 获得对主题或工具的基础理解
- 通过实践项目培养工作相关技能
- 获得可共享的职业证书

该课程共有1个模块
Engineer AI Models: Explain, Tune & Experiment prepares program and project managers to guide AI projects beyond “just working” toward being trusted, explainable, and reproducible. You’ll learn how feature engineering and hyperparameter tuning improve model performance, how explainability methods like SHAP and LIME build stakeholder confidence, and how structured experimentation ensures reliable results. Through real-world scenarios — from boosting fraud detection F1 scores, to presenting credit approval models to risk committees, to planning experiments in Jupyter — you’ll gain the skills to ask the right questions, guide technical teams, and translate complex model outputs into business impact. By the end, you’ll know how to move AI projects from black box to business-ready.
涵盖的内容
5个视频3篇阅读材料4个作业
获得职业证书
将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。
位教师

提供方
从 Machine Learning 浏览更多内容
状态:免费试用
状态:免费试用Scrimba
状态:免费试用
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,
¹ 本课程的部分作业采用 AI 评分。对于这些作业,将根据 Coursera 隐私声明使用您的数据。







