Coursera

Fine-tuning Image Models with Diffusion

即将结束: 只需 199 美元(原价 399 美元)即可通过 Coursera Plus 学习新技能。立即节省

Coursera

Fine-tuning Image Models with Diffusion

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有4个模块

Learn the fundamentals of diffusion models and why they play such a critical role in modern image generation. You’ll explore the key architectural components of Stable Diffusion, U-Net, VAE, and text encoders, and see how LoRA adapts these models efficiently for fine-tuning. You’ll also analyze memory optimization techniques and compare LoRA with full fine-tuning approaches, giving you practical principles for deciding which method to use depending on your goals and constraints.

涵盖的内容

1个视频2篇阅读材料1个作业1个非评分实验室

Learn how to personalize diffusion models using the DreamBooth methodology. You’ll prepare small, targeted datasets for training custom concepts and styles, and understand how prior-preservation loss helps maintain model generalization. You’ll also apply hyperparameter strategies to balance creativity with stability and practice managing checkpoints and merging techniques. These skills give you the ability to adapt diffusion models to unique styles and use cases, making fine-tuning directly relevant to real-world creative and professional projects.

涵盖的内容

1个视频1篇阅读材料1个作业1个非评分实验室

Learn how to use ComfyUI to design and manage advanced workflows for diffusion models. You’ll set up the environment, navigate the node-based interface, and load custom fine-tuned models into your pipelines. You’ll also practice building complex generation workflows with extensions like ControlNet, giving you a flexible, visual way to experiment and produce consistent, high-quality results. These skills make workflow design more efficient and directly applicable to real-world creative and production settings.

涵盖的内容

2篇阅读材料1个作业

Learn how to optimize fine-tuned diffusion models so they’re reliable in real production environments. You’ll adjust inference settings like steps, CFG scale, and batch size to balance speed, quality, and resource use, and practice testing how small tweaks can dramatically improve results. You’ll also adapt workflows for deployment, gaining practical skills to deliver outputs that are both efficient and production-ready. These techniques give you the ability to make informed trade-offs that directly impact performance in real-world projects.

涵盖的内容

1篇阅读材料1个作业1个非评分实验室

位教师

Professionals from the Industry
66 门课程 22,104 名学生

提供方

Coursera

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题

¹ 本课程的部分作业采用 AI 评分。对于这些作业,将根据 Coursera 隐私声明使用您的数据。