Alberta Machine Intelligence Institute
Generative AI for Audio and Images: Models and Applications

通过 Coursera Plus 解锁访问 10,000 多门课程。开始 7 天免费试用

Alberta Machine Intelligence Institute

Generative AI for Audio and Images: Models and Applications

Anahita Doosti
Soroush Razavi

位教师:Anahita Doosti

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

November 2025

作业

17 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有4个模块

This module introduces the foundations and core concepts of AI-generated audio. Learners explore why audio generation is uniquely challenging, such representation and evaluation challenges. They learn how audio is represented and processed, compare waveform and symbolic formats, and common audio data formats and Python libraries for working with audio. The module also examines methods for evaluating generated audio and provides a framework for categorizing audio generation approaches by their functionality and human–AI collaboration level. It concludes with a historical overview of AI-generated audio, tracing its evolution from early rule-based methods to modern deep generative models.

涵盖的内容

21个视频3篇阅读材料4个作业2个讨论话题

Building on the fundamentals, this module dives into advanced models for audio generation. Learners study Variational Autoencoders (VAEs) and their variants, and how they apply to melody generation and speech synthesis. The module also explores transformer-based models, such as Music Transformer, AudioLM, and FastSpeech, as well as diffusion-based models like DiffWave and Stable Audio. Through these lessons, learners gain a comprehensive understanding of how modern generative architectures produce realistic, high-quality audio and music.

涵盖的内容

31个视频2篇阅读材料4个作业

This module transitions from audio to image generation, introducing the principles and evolution of image and video synthesis. Learners examine key architectures like GANs and VAEs, explore how adversarial training works, and study variations such as Conditional and Progressive GANs, Pix2Pix, and CycleGAN. The module also connects theory to practice by showcasing creative and commercial applications—from art and design to data augmentation—demonstrating how generative models enhance realism and variety in visual outputs.

涵盖的内容

22个视频3篇阅读材料5个作业

In this module,we explore the final stages of what large language models (LLMs) can offer. You’ll learn how and when to use fine-tuning, along with the pros and cons of different approaches. Throughout the course, you will receive relevant assignments that prepare you for the capstone project: building a fully functional chatbot

涵盖的内容

21个视频1篇阅读材料4个作业

位教师

Anahita Doosti
Alberta Machine Intelligence Institute
1 门课程66 名学生

提供方

从 Algorithms 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题