In this 1 hour long project-based course, you will learn to build a linear regression model using Pyspark ML to predict students' admission at the university. We will use the graduate admission 2 data set from Kaggle. Our goal is to use a Simple Linear Regression Machine Learning Algorithm from the Pyspark Machine learning library to predict the chances of getting admission. We will be carrying out the entire project on the Google Colab environment with the installation of Pyspark. You will need a free Gmail account to complete this project. Please be aware of the fact that the dataset and the model in this project, can not be used in the real-life. We are only using this data for the learning purposes.
您将学到什么
Learn to build the Linear Regression Model using Pyspark ML to predict admission
Learn to setup Pyspark and work with Pyspark dataframes in Colab Environment
Learn to clean and prepare data for analysis.
您将练习的技能
要了解的详细信息

添加到您的领英档案
仅桌面可用
了解顶级公司的员工如何掌握热门技能

在不到 2 个小时的时间内学习、练习和应用为就业做好准备的技能
- 接受行业专家的培训
- 获得解决实训工作任务的实践经验
- 使用最新的工具和技术来建立信心

关于此指导项目
分步进行学习
在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:
Introduction and Installing Dependencies
Clone and Explore the Dataset
Data Cleaning
Correlation analysis and Feature Selection
Build the Linear Regression Model
Evaluate and Test the model
4个项目图片
位教师

学习方式
基于技能的实践学习
通过完成与工作相关的任务来练习新技能。
专家指导
使用独特的并排界面,按照预先录制的专家视频操作。
无需下载或安装
在预配置的云工作空间中访问所需的工具和资源。
仅在台式计算机上可用
此指导项目专为具有可靠互联网连接的笔记本电脑或台式计算机而设计,而不是移动设备。
人们为什么选择 Coursera 来帮助自己实现职业发展




学生评论
34 条评论
- 5 stars
79.41%
- 4 stars
11.76%
- 3 stars
5.88%
- 2 stars
2.94%
- 1 star
0%
显示 3/34 个
已于 Aug 9, 2022审阅
Great walkthrough w good explanations of the concepts used.
已于 Aug 25, 2021审阅
Straightforward tutorial of how to use pyspark for a simple machine learning task.
您可能还喜欢
- 状态:免费试用
Coursera Project Network
- 状态:预览
Edureka
Coursera Project Network
常见问题
购买指导项目后,您将获得完成指导项目所需的一切,包括通过 Web 浏览器访问云桌面工作空间,工作空间中包含您需要了解的文件和软件,以及特定领域的专家提供的分步视频说明。
由于您的工作空间包含适合笔记本电脑或台式计算机使用的云桌面,因此指导项目不在移动设备上提供。
指导项目授课教师是特定领域的专家,他们在项目的技能、工具或领域方面经验丰富,并且热衷于分享自己的知识以影响全球数百万的学生。