Board Infinity
Machine Learning Fundamentals for Java Developers
Board Infinity

Machine Learning Fundamentals for Java Developers

本课程是 Java in Machine Learning 专项课程 的一部分

Board Infinity

位教师:Board Infinity

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
初级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
初级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Understand and apply core ML techniques using Java libraries

  • Apply supervised and unsupervised learning techniques such as regression, classification, and clustering.

  • Create end-to-end ML workflows in Java, including data preprocessing, model training, and performance evaluation.

  • Evaluate and debug Java-based ML models to improve performance, reliability, and readiness for real-world deployment scenarios.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

June 2025

作业

14 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Java in Machine Learning 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

Introduction to Machine Learning and Java lays the conceptual and technical foundation for understanding how machine learning can be applied within the Java development ecosystem. This module begins by demystifying core ML concepts such as supervised vs. unsupervised learning, model training, evaluation, and the role of data in predictive systems. Learners will then explore the relevance of Java in the ML landscape—examining the tools, libraries, and architectural patterns that allow Java developers to effectively participate in the machine learning workflow. By introducing key ML terminology and drawing parallels with familiar Java principles, this module helps learners establish a strong mental model for integrating machine learning into software projects. It also sets up the development environment and provides a hands-on preview of Java-compatible ML libraries to be used in later modules.

涵盖的内容

9个视频4篇阅读材料4个作业1个讨论话题2个插件

Supervised Learning in Java introduces learners to one of the most widely used machine learning paradigms—supervised learning—and demonstrates how to implement it using Java-based tools and libraries. The module covers key concepts such as labeled datasets, training/testing splits, classification vs. regression, and model evaluation metrics. Learners will explore popular algorithms like Decision Trees, Naive Bayes, and Linear Regression, and see how they can be applied to real-world problems using Java libraries such as Weka, Tribuo, or DL4J. Through hands-on projects and guided examples, learners will build, train, and evaluate supervised learning models using Java, while learning to interpret outputs and refine model performance. By the end of this module, learners will have the skills to integrate basic supervised learning models into their Java applications with confidence.

涵盖的内容

10个视频3篇阅读材料4个作业1个插件

Unsupervised Learning in Java explores how to discover hidden patterns, groupings, and structures in data without predefined labels using Java-based machine learning tools. This module introduces the core principles of unsupervised learning, including clustering and dimensionality reduction techniques. Learners will gain hands-on experience with algorithms like K-Means, DBSCAN, and Principal Component Analysis (PCA), using libraries such as Weka or Tribuo to implement these models in Java. The focus is on identifying use cases where unsupervised learning adds value—such as customer segmentation, anomaly detection, and data compression—and on understanding how to interpret results when there are no explicit output labels. By the end of the module, learners will be able to build unsupervised workflows and integrate pattern discovery into Java applications.

涵盖的内容

6个视频2篇阅读材料3个作业1个插件

Applied ML with Java brings together the foundational concepts of machine learning and demonstrates how to apply them to real-world scenarios using the Java ecosystem. This module emphasizes end-to-end implementation—from data ingestion and preprocessing to model training, evaluation, and integration into Java applications. Learners will work with common use cases such as fraud detection, sentiment analysis, and recommendation systems, applying both supervised and unsupervised techniques with Java libraries like Tribuo, DL4J, and Weka. Beyond just building models, the module also covers how to prepare and clean datasets, handle model persistence, and embed ML logic into production-ready Java codebases. By the end, learners will have a clear understanding of how to design, implement, and deploy practical machine learning solutions in Java environments.

涵盖的内容

7个视频2篇阅读材料3个作业1个插件

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Board Infinity
Board Infinity
184 门课程319,710 名学生

提供方

Board Infinity

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题