Microsoft
Working with large language models using Azure
Microsoft

Working with large language models using Azure

 Microsoft

位教师: Microsoft

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有4个模块

This foundational module introduces the core concepts behind Large Language Models (LLMs). You will start by exploring the fundamental architecture that powers models like GPT (Generative Pre-trained Transformer) and learn how they process information and generate human-like text. The second half of the module is dedicated to prompt engineering, where you will learn and apply essential techniques—from basic commands to advanced strategies like few-shot learning and chain-of-thought—to effectively communicate with and control AI models to achieve desired outcomes.

涵盖的内容

8个视频8篇阅读材料5个作业

This module focuses on one of the most powerful techniques for enhancing LLMs: Retrieval-Augmented Generation (RAG). You will learn how to ground models in external, private, or real-time data sources to provide more accurate and contextually relevant responses. You will start by building a basic RAG pipeline using Azure services and then progress to constructing and optimizing advanced systems with techniques like semantic ranking and sophisticated data chunking strategies.

涵盖的内容

5个视频6篇阅读材料6个作业

This module explores fine-tuning as a powerful method for customizing an LLM's core behavior, style, or knowledge for specialized tasks. You will learn the entire fine-tuning workflow, from preparing a high-quality dataset to launching the training job and evaluating the customized model's performance in Azure. Critically, you will learn to strategically decide when to use fine-tuning versus RAG—or a hybrid of both—to create highly effective, domain-specific AI solutions.

涵盖的内容

4个视频7篇阅读材料6个作业

This module transitions from theory to practice by guiding you through the end-to-end process of building and deploying a complete generative AI application. You will learn to design an application's architecture and user flow before using Azure AI Foundry and Prompt flow tools to build it. The module then covers the critical MLOps lifecycle, teaching you how to deploy your application as a secure endpoint, manage it in a production environment, and implement monitoring with Azure Monitor for performance and cost.

涵盖的内容

6个视频6篇阅读材料6个作业

位教师

 Microsoft
256 门课程2,087,520 名学生

提供方

Microsoft

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题