University of Washington
机器学习基础:案例研究法
University of Washington

机器学习基础:案例研究法

本课程是 机器学习 专项课程 的一部分

Emily Fox
Carlos Guestrin

位教师:Emily Fox

406,285 人已注册

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
4.6

(13,531 条评论)

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
93%
大多数学生喜欢此课程
深入了解一个主题并学习基础知识。
4.6

(13,531 条评论)

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
93%
大多数学生喜欢此课程

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

11 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 机器学习 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有7个模块

机器学习无处不在,但往往在幕后操作。<p>本专业介绍将让您深入了解机器学习的力量,以及您个人在完成学业后能够开发和部署的大量智能应用。</p>我们还将讨论我们是谁,我们是如何走到今天的,以及我们对智能应用未来的看法。

涵盖的内容

18个视频9篇阅读材料1个作业

<p> 我们将在第一个案例研究--预测房价--的背景下探讨这一想法,您将创建模型,根据输入特征(面积、卧室和浴室数量......)预测连续值(价格)。 <p>这只是回归应用的众多领域之一。其他应用包括预测医学中的健康结果、金融中的股票价格、高性能计算中的功率使用,以及分析哪些调节因子对基因表达很重要。</p>您还将研究如何分析预测模型的性能,并使用 Jupyter 笔记本在实践中实现回归。

涵盖的内容

19个视频3篇阅读材料2个作业

<p>在我们的第二个案例研究--情感分析中,您将创建模型,根据输入特征(评论文本、用户配置文件信息......)预测类别(正面/负面情感)。这项任务是分类的一个示例,分类是机器学习中应用最广泛的领域之一,其应用范围非常广泛,包括广告定位、垃圾邮件检测、医疗诊断和图像分类。</p>您将分析分类器的准确性,在 Jupyter 笔记本中实现一个实际的分类器,并对您将在毕业设计中构建和部署的智能应用程序的核心部分进行初步尝试。

涵盖的内容

19个视频3篇阅读材料2个作业

读者对某篇特定的新闻文章感兴趣,您想找到一篇类似的文章推荐给他。 相似性的正确概念是什么? 如何自动搜索文档以找到最相似的文档? 如何首先对文档进行定量表示?<p>在第三个案例研究,即文档检索中,您将研究各种文档表示方法和检索最相似子集的算法。 您还将考虑通过相似性(如文档主题)对文章进行自动分组的文档结构化表示方法。</p>您将在 Jupyter 笔记本中为维基百科条目构建一个智能文档检索系统。

涵盖的内容

17个视频3篇阅读材料2个作业

有没有想过亚马逊是如何形成个性化产品推荐的? Netflix 如何推荐电影? Pandora 如何选择下一首流媒体歌曲? Facebook 或 LinkedIn 如何找到可能与你有联系的人? 所有这些个性化内容技术的基础都是协同过滤技术。<p>您将学习如何使用各种技术构建这样一个推荐系统,并探索它们之间的权衡。</p>我们将研究的一种方法是矩阵因式分解,它可以学习用户和产品的特征以形成推荐。 在 Jupyter 笔记本中,您将使用这些技术构建一个真实的歌曲推荐系统。

涵盖的内容

19个视频3篇阅读材料2个作业

您可能听说过,深度学习作为机器学习领域最有前途的技术之一,正在成为全球新闻。<p> 在我们的最后一个案例研究--搜索图像中,您将了解神经网络层如何提供非常具有描述性的(非线性)特征,从而在图像分类和检索任务中提供令人印象深刻的性能。 然后,您将构建深度特征,这是一种迁移学习技术,即使在训练模型的数据很少的情况下,您也可以非常轻松地使用深度学习。</p>使用 iPhython 笔记本,您将利用深度学习构建一个图像分类器和一个智能图像检索系统。

涵盖的内容

18个视频4篇阅读材料2个作业

在课程的最后,我们将介绍将机器学习工具转化为服务的最后阶段:部署。<p>我们还将讨论机器学习领域仍然面临的一些挑战,以及我们认为机器学习的发展方向。 最后,我们将概述本专业其余部分的内容,以及随着机器学习的发展,我们将面临的令人惊叹的智能应用。

涵盖的内容

7个视频1篇阅读材料

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

授课教师评分
4.7 (1,223个评价)
Emily Fox
University of Washington
6 门课程493,225 名学生
Carlos Guestrin
University of Washington
8 门课程494,012 名学生

提供方

从 机器学习 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'

学生评论

4.6

13,531 条评论

  • 5 stars

    72.38%

  • 4 stars

    20.77%

  • 3 stars

    3.73%

  • 2 stars

    1.13%

  • 1 star

    1.97%

显示 3/13531 个

MK
5

已于 Jul 20, 2019审阅

SS
4

已于 May 18, 2020审阅

RM
4

已于 Feb 2, 2022审阅

Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题