Este es un curso de modelización cuantitativa pensado para su aplicación en el ámbito de finanzas corporativas. En este curso aprenderás cómo explotar de la mejor forma los datos que alimentan a los modelos financieros.


您将学到什么
Explotar datos históricos, o de otras empresas o unidades de negocio para estimar el escenario esperado y escenarios de riesgo.
Utilizar modelos de regresión para incorporar información adicional a la explicación y predicción de la variable de interés a modelar.
Modelar y predecir series de tiempo.
Realizar mejores predicciones utilizando una gran cantidad de variables explicativas.
您将获得的技能
要了解的详细信息

添加到您的领英档案
5 项作业
了解顶级公司的员工如何掌握热门技能

该课程共有4个模块
En este módulo introduciremos la proyección de una variable basándonos en la información disponible sobre esa variable. Analizaremos también cómo las proyecciones afectan nuestras decisiones financieras. Nos apoyaremos en los conceptos de proyección de un escenario esperado, la identificación de escenarios de riesgo, y en cuantificar sus probabilidades de ocurrencia. Utilizaremos para esto herramientas clásicas de la estadística frecuentista: los conceptos de escenario esperado, distribución de probabilidad, y el uso de percentiles.
涵盖的内容
6个视频9篇阅读材料1个作业
En este módulo cubriremos cómo proyectar una variable incluyendo datos adicionales, aquellos que servirían para explicar o predecir el fenómeno de interés. Nos enfocaremos en modelos de regresión, uno de los métodos más utilizados para la modelización. Comenzaremos por introducir la versión simple, donde una sola variable es utilizada como base de la modelización. Luego, extenderemos el modelo para incluir múltiples variables. Introduciremos los cambios en la interpretación, y los problemas comunes que pueden surgir en la modelización.
涵盖的内容
12个视频6篇阅读材料1个作业
En los módulos anteriores trabajamos con modelos donde la información temporal (i.e., cuándo ocurrió un evento) es irrelevante. En este módulo extendemos los modelos para acomodar a las Series de Tiempo, que son aquellos procesos en donde la secuencialidad de la información es relevante. Aplicaciones incluyen la proyección del Producto Bruto Interno de un país, la tasa de interés en un mercado, el precio de una acción, etc. Discutiremos formas de modelizar a las series de tiempo por sus principales componentes. Cubriremos también modelos específicos para modelar el componente de autocorrelación temporal. En este módulo también introduciremos al software R para modelar series de tiempo de una manera eficiente.
涵盖的内容
8个视频5篇阅读材料1个作业
En este módulo nos enfocaremos en lo que llamaremos un enfoque predictivo de la modelización. Estos métodos buscan maximizar la capacidad predictiva aun cuando al hacerlo pierden la capacidad explicativa del fenómeno en cuestión. La prioridad del enfoque predictivo es hacer la mejor predicción posible, y para ello es fundamental evitar el sobreajuste de los datos. Aprenderemos a diagnosticar el sobreajuste e introduciremos a los modelos de regularización, un tipo de modelos que permiten limitar el sobreajuste de manera automatizada.
涵盖的内容
6个视频4篇阅读材料2个作业
位教师

人们为什么选择 Coursera 来帮助自己实现职业发展




学生评论
29 条评论
- 5 stars
62.06%
- 4 stars
31.03%
- 3 stars
3.44%
- 2 stars
0%
- 1 star
3.44%
显示 3/29 个
已于 Oct 4, 2021审阅
El curso estuvo diicil, pero aprendí muchas cosas.
已于 Sep 19, 2025审阅
Buen material de apoyo y las explicaciones son muy detalladas
已于 Jan 29, 2023审阅
reforse el conocimiento de excel y aprendi un poco de r
常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,