Coursera
Optimize & Interface LLM Apps Effectively

以 199 美元(原价 399 美元)购买一年 Coursera Plus,享受无限增长。立即节省

Coursera

Optimize & Interface LLM Apps Effectively

Starweaver
Karlis Zars

位教师:Starweaver

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Optimize LLM behavior using structured prompting, role assignment, and controlled output formatting.

  • Design scalable middleware to manage API requests, rate limits, caching, and token budgets for efficient LLM apps.

  • Create intuitive, user-centered interfaces that integrate feedback loops to continuously improve model responses and user trust.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

December 2025

作业

1 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Build Next-Gen LLM Apps with LangChain & LangGraph 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有3个模块

This module explores how to transform vague or inconsistent LLM behavior into precise, controllable reasoning through advanced prompt design. Learners will uncover why even well-trained models “fail silently” - producing fluent but unreliable outputs - and learn how to diagnose and fix these issues systematically. By applying structured prompting methods such as chain-of-thought reasoning, JSON formatting, and role-based context setup, students will gain practical skills to optimize LLM performance without retraining the model. The module ends with a live demo in the ChatGPT API playground, showing how a few strategic prompt refinements can significantly improve factual accuracy and response consistency.

涵盖的内容

4个视频2篇阅读材料1次同伴评审

This module dives into the engineering backbone of reliable LLM-powered applications - the API and middleware layer. Learners will understand how to interface effectively with LLM APIs by implementing rate limits, request retries, caching, and token cost control. Emphasis is placed on making LLM calls stable, scalable, and cost-efficient under production-like conditions. Real-world patterns are illustrated through examples in Python or Node.js, and the module concludes with a hands-on demo building a backend service that interacts robustly with the OpenAI API, ensuring consistent performance and predictable costs even under heavy user load.

涵盖的内容

3个视频1篇阅读材料1次同伴评审

This module bridges technical design and user experience - showing how the interface directly shapes model effectiveness. Learners will discover how thoughtful UI elements such as clarification prompts, feedback sliders, and reasoning displays turn a static LLM into an adaptive, user-centered system. The lesson explores best UX patterns for chatbots, text generation tools, and intelligent search assistants, highlighting how human-in-the-loop feedback improves both model accuracy and trustworthiness. The demo guides learners through building a minimal React-based frontend that connects to the backend created earlier, visualizes responses dynamically, and incorporates live user feedback for iterative model improvement. This module emphasizes human-centered interaction design and adaptive UI patterns that enable continuous model learning and improved user trust.

涵盖的内容

4个视频1篇阅读材料1个作业2次同伴评审

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Starweaver
Coursera
463 门课程912,050 名学生

提供方

Coursera

从 Cloud Computing 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题