Coursera
Optimize AI Inference Speed & Accuracy

以 199 美元(原价 399 美元)购买一年 Coursera Plus,享受无限增长。立即节省

Coursera

Optimize AI Inference Speed & Accuracy

Starweaver
Ritesh Vajariya

位教师:Starweaver

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Analyze inference bottlenecks to identify optimization opportunities in production ML systems.

  • Implement model pruning techniques to reduce computational complexity while maintaining acceptable accuracy.

  • Apply quantization methods and benchmark trade-offs for secure and efficient model deployment.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

December 2025

作业

1 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有3个模块

In this module, learners will master profiling techniques to identify bottlenecks and understand the fundamental trade-offs in model inference optimization. You'll use industry-standard tools like PyTorch Profiler to diagnose where models waste time—whether in computation, memory bandwidth, or data transfer. By the end, you'll confidently analyze profiling data, prioritize optimization efforts, and establish performance baselines for production ML systems.

涵盖的内容

4个视频2篇阅读材料1次同伴评审

In this module, learners will master pruning techniques to reduce neural network complexity without sacrificing accuracy. You'll explore both structured and unstructured pruning approaches, implement them using PyTorch pruning utilities, and discover how to recover accuracy through fine-tuning and knowledge distillation. By the end, you'll confidently apply pruning to optimize models for resource-constrained environments like mobile devices and edge hardware.

涵盖的内容

3个视频1篇阅读材料1次同伴评审

In this module, learners will master quantization techniques to reduce numerical precision while maintaining model accuracy. You'll implement both post-training quantization and quantization-aware training using PyTorch, then compare quantization against pruning across speed, accuracy, and security dimensions. By the end, you'll understand how optimization choices affect adversarial robustness and confidently select the right technique for secure, high-performance deployments in mission-critical applications.

涵盖的内容

4个视频1篇阅读材料1个作业2次同伴评审

位教师

Starweaver
Coursera
474 门课程912,887 名学生

提供方

Coursera

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'

常见问题