In this course, you will explore two techniques to improve the performance of a foundation model (FM): Retrieval Augmented Generation (RAG) and fine-tuning. You will learn about Amazon Web Services (AWS) services that help store embeddings with vector databases, the role of agents in multi-step tasks, define methods for fine-tuning an FM, how to prepare data for fine-tuning, and more.


您将学到什么
Identify AWS services that help store embeddings with vector databases.
Understand the role of agents in multi-step tasks.
Understand approaches to evaluate FM performance and determine whether an FM effectively meets business objectives.
您将获得的技能
要了解的详细信息
October 2025
1 项作业
了解顶级公司的员工如何掌握热门技能

该课程共有1个模块
In this course, you will explore two techniques to improve the performance of a foundation model (FM): Retrieval Augmented Generation (RAG) and fine-tuning. You will learn about Amazon Web Services (AWS) services that help store embeddings with vector databases, the role of agents in multi-step tasks, define methods for fine-tuning an FM, how to prepare data for fine-tuning, and more.
涵盖的内容
1篇阅读材料1个作业
位教师

从 Machine Learning 浏览更多内容
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
更多问题
提供助学金,




