Packt
Advanced PyTorch Techniques and Applications
Packt

Advanced PyTorch Techniques and Applications

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
4.8

(12 条评论)

中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
4.8

(12 条评论)

中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Create and assess ML models for specific datasets, evaluating performance with proper metrics.

  • Design autoencoders for dimensionality reduction and build GANs for data simulation, analyzing quality.

  • Develop Graph Neural Networks for graph data and implement Transformers, including Vision Transformers.

  • Enhance models with semi-supervised learning using limited data, and deploy them with Flask on Google Cloud.

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

6 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 PyTorch Ultimate 2024 - From Basics to Cutting-Edge 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有12个模块

In this module, we will explore the basics of recommender systems, starting from foundational concepts and progressing through hands-on coding exercises. You'll create datasets, develop and train models, and learn how to incorporate user and item information for improved recommendations. Finally, we will implement evaluation metrics to measure the system's performance.

涵盖的内容

5个视频2篇阅读材料1个插件

In this module, we will dive into autoencoders, covering both theoretical aspects and practical implementations. You will gain a solid understanding of how autoencoders work, their applications, and get hands-on experience coding these models.

涵盖的内容

3个视频1个插件

In this module, we will cover the essentials of generative adversarial networks, including an overview of their principles and coding implementations. You will learn to develop a GAN model and engage in exercises that challenge you to apply these techniques to specific tasks.

涵盖的内容

4个视频1个作业1个插件

In this module, we will explore graph neural networks, starting with the basics and moving through coding implementations. You'll learn how to prepare data, train models, and evaluate their performance, all within the context of GNNs.

涵盖的内容

5个视频1个插件

In this module, we will delve into Transformers, beginning with foundational concepts and then focusing on their application to vision tasks. You'll gain hands-on experience in implementing and training a Vision Transformer on a custom dataset.

涵盖的内容

3个视频1个插件

In this module, we will introduce you to PyTorch Lightning, a powerful framework for PyTorch model development. You'll learn the basics, implement models, and explore techniques such as early stopping to optimize your training processes.

涵盖的内容

4个视频1个作业1个插件

In this module, we will cover semi-supervised learning, beginning with foundational concepts and progressing through practical implementations. You will learn about supervised reference models, set up datasets, and develop models that effectively utilize both labeled and unlabeled data.

涵盖的内容

4个视频1个插件

In this module, we will explore the vast field of Natural Language Processing, from fundamental concepts to hands-on coding implementations. You'll learn to work with word embeddings, sentiment analysis, pre-trained models, and advanced topics like zero-shot classification and vector databases.

涵盖的内容

20个视频1个插件

In this module, we will cover a range of miscellaneous topics in machine learning, including architectures like ResNet and Inception, and concepts such as Extreme Learning Machines. Each topic will include both theoretical understanding and practical coding exercises.

涵盖的内容

6个视频1个作业1个插件

In this module, we will focus on model debugging techniques, specifically using hooks. You'll learn the theoretical aspects and get hands-on experience implementing hooks to troubleshoot and optimize your models.

涵盖的内容

2个视频1个插件

In this module, we will explore the essentials of model deployment, covering both on-premise and cloud-based strategies. You'll learn to deploy models using Flask, consume data from APIs, and utilize Google Cloud for deploying model weights and REST APIs.

涵盖的内容

6个视频1个作业1个插件

In this module, we will conclude the course by summarizing key concepts and techniques covered throughout. Additionally, we will provide resources and recommendations for further learning to help you continue your journey in advanced PyTorch techniques and applications.

涵盖的内容

1个视频1篇阅读材料2个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Packt - Course Instructors
Packt
971 门课程229,122 名学生

提供方

Packt

从 Software Development 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'

学生评论

4.8

12 条评论

  • 5 stars

    83.33%

  • 4 stars

    8.33%

  • 3 stars

    8.33%

  • 2 stars

    0%

  • 1 star

    0%

显示 3/12 个

XW
5

已于 Jan 2, 2025审阅

FK
5

已于 Jul 10, 2025审阅

Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题