Packt
Advanced RNN Concepts and Projects
Packt

Advanced RNN Concepts and Projects

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
高级设置 等级

推荐体验

6 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
高级设置 等级

推荐体验

6 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Identify key components and functionalities of GRUs, LSTMs, and attention mechanisms.

  • Utilize TensorFlow to build, train, and optimize RNN models.

  • Develop and implement advanced RNN models to solve complex problems.

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

3 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Deep Learning: Recurrent Neural Networks with Python 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有5个模块

In this module, we will address the vanishing gradient problem in Recurrent Neural Networks and explore various solutions. You'll learn about Gated Recurrent Units (GRUs) and Long Short Term Memory (LSTM) networks, including their mathematical foundations. Additionally, we will cover bidirectional RNNs and the attention model, providing a comprehensive approach to improving RNN performance.

涵盖的内容

9个视频2篇阅读材料

In this module, we will introduce you to TensorFlow, a powerful framework for building and training deep learning models. You will learn how to implement TensorFlow in practical applications, focusing on a text classification example using RNNs. Additionally, we'll compare TensorFlow with other popular deep learning frameworks to highlight its strengths and unique features.

涵盖的内容

2个视频1个作业

In this module, we will guide you through your first project: creating a book writer using RNNs. You will learn to map data, prepare the RNN architecture, and train the model using TensorFlow. By the end, you'll be able to generate coherent text and complete an activity to build a word-level text generator.

涵盖的内容

7个视频

In this module, we will tackle the stock price prediction project. You will learn to define the problem, create and prepare a dataset, and train an RNN model. Through practical exercises, you will gain experience in evaluating the model's performance and implementing an artificial neural network for stock prediction.

涵盖的内容

5个视频1个作业

In this module, we will provide you with further reading and resources to expand your knowledge beyond the course. You'll have access to curated materials that will support your continued learning and mastery of Recurrent Neural Networks and their applications.

涵盖的内容

1个视频1篇阅读材料1个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Packt - Course Instructors
Packt
971 门课程232,654 名学生

提供方

Packt

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题