Packt
Cluster Analysis and Unsupervised Machine Learning in Python
Packt

Cluster Analysis and Unsupervised Machine Learning in Python

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Master key clustering techniques like K-Means, hierarchical clustering, and Gaussian Mixture Models.

  • Implement and evaluate clustering algorithms using Python, with hands-on exercises and real-world applications.

  • Understand the mathematical foundations of clustering and learn methods to optimize and assess models.

  • Explore practical applications in Natural Language Processing, Computer Vision, and data analysis.

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

10 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有9个模块

In this module, we will introduce you to the course on Cluster Analysis and Unsupervised Machine Learning in Python. You'll gain insight into the course objectives, an overview of the topics covered, and an exclusive bonus offer designed to enhance your learning experience.

涵盖的内容

3个视频1篇阅读材料

In this module, we will guide you on how to access the course code and supplementary resources. You'll ensure your environment is ready for practical learning and become acquainted with the tools you'll use throughout the course.

涵盖的内容

1个视频1个作业1个插件

In this module, we will delve into the foundations of unsupervised learning, exploring its applications and significance in various domains. You’ll learn why clustering is a powerful tool for identifying hidden patterns in data and its role in enhancing data-driven decisions.

涵盖的内容

2个视频1个作业1个插件

In this module, we will take a deep dive into K-Means clustering, starting with a beginner-friendly introduction and progressing to advanced coding exercises and theoretical insights. You’ll explore the algorithm’s functionality, practical applications, and visualization techniques. Additionally, we’ll address common pitfalls, evaluation methods, and real-world use cases in diverse fields like Natural Language Processing and Computer Vision.

涵盖的内容

23个视频1个作业1个插件

In this module, we will explore hierarchical clustering, focusing on the agglomerative approach. You'll gain a clear understanding of how this method works through visual walkthroughs and practical coding examples in Python. We’ll also delve into real-world applications, from evolutionary studies to analyzing social media data, and learn how to interpret dendrograms to reveal data insights.

涵盖的内容

5个视频1个作业1个插件

In this module, we will dive deep into Gaussian Mixture Models (GMMs), a powerful unsupervised learning technique. You'll learn how the GMM algorithm works, implement it in Python, and tackle practical issues. We'll also explore the Expectation-Maximization algorithm in detail and compare GMM with K-Means and Bayes classifiers. Additionally, you'll discover how Kernel Density Estimation complements these methods in modeling complex data distributions.

涵盖的内容

10个视频1个作业1个插件

In this module, we will focus on setting up your environment to ensure a smooth learning experience. You’ll check your system readiness, configure the Anaconda environment, and install critical Python libraries required for the course.

涵盖的内容

3个视频1个作业1个插件

In this module, we will support beginners with extra Python coding help. You’ll start with essential coding concepts, practice through guided examples, and understand the parallels between Jupyter Notebook and other environments. Additionally, you’ll receive an introduction to GitHub and tips to refine your coding skills.

涵盖的内容

4个视频1个作业1个插件

In this module, we will provide effective strategies to enhance your learning experience. You'll receive comprehensive advice on succeeding in this course, determine its suitability based on your goals and expertise, and explore the optimal sequence of courses to follow. This guidance will help you tailor your learning approach for maximum impact.

涵盖的内容

4个视频3个作业

位教师

Packt - Course Instructors
Packt
971 门课程234,954 名学生

提供方

Packt

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题