Packt
Satellite Remote Sensing Data Bootcamp With Opensource Tools
Packt

Satellite Remote Sensing Data Bootcamp With Opensource Tools

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

6 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

6 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Analyze different types of satellite remote sensing data

  • Preprocess optical data using atmospheric correction techniques

  • Classify remote sensing data using both supervised and unsupervised methods

  • Handle SAR data, including preprocessing and speckle filtering

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

4 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有6个模块

In this module, we will lay the groundwork for your journey into satellite remote sensing data analysis. You'll begin by learning about the course structure, then explore the fundamentals of remote sensing, different data types, and the essential tools you will use throughout the course. By the end of this module, you'll have a solid understanding of the basics and be ready to dive deeper into the practical aspects of the field.

涵盖的内容

7个视频1篇阅读材料

In this module, we will delve into the world of optical remote sensing data, starting with the fundamental principles that govern its collection. You'll examine the different types of optical data and how they are used, particularly focusing on Landsat data. Additionally, you'll explore the specifics of Landsat sensors and gain hands-on experience in using QGIS to download and view this data. By the end of this section, you'll be equipped with the knowledge and skills needed to work with optical remote sensing data in your analyses.

涵盖的内容

6个视频1个插件

In this module, we will focus on the crucial steps involved in pre-processing optical remote sensing data. You'll learn why pre-processing is essential, particularly for improving data accuracy. The module will guide you through performing atmospheric correction on Landsat data using R, and introduce you to the Semi-Automatic Classification Plugin in QGIS for efficient pre-processing. Additionally, you'll assess the quality of atmospherically corrected outputs and explore the practical applications of pre-processed data. By the end of this section, you'll have the skills to refine raw satellite data for meaningful analysis.

涵盖的内容

6个视频1个作业1个插件

In this module, we will explore the diverse applications of optical remote sensing data across various analytical processes. You'll begin by mastering band manipulation in QGIS, followed by the application of band math to derive critical insights. The module will introduce you to texture indices and tasseled cap transformations, offering both theoretical knowledge and practical implementation using GRASS GIS and ESA SNAP. Additionally, you'll delve into vegetation indices and learn how to reduce data dimensionality for more efficient analysis. By the end of this section, you'll be well-versed in multiple advanced techniques for leveraging optical data in your projects

涵盖的内容

13个视频1个插件

In this module, we will delve into the classification of remote sensing satellite data, covering both unsupervised and supervised methods. You’ll begin by exploring the theory behind these approaches, followed by practical applications using ESA SNAP and QGIS. The module also introduces machine learning concepts and their integration into remote sensing classification, guiding you through creating training data and applying advanced algorithms to satellite imagery. By the end of this section, you’ll be equipped with comprehensive skills to classify and analyze remote sensing data accurately and efficiently

涵盖的内容

9个视频1个插件

In this module, we will explore active remote sensing data, focusing on Synthetic Aperture Radar (SAR). You'll begin by understanding the reasons for using active remote sensing over passive methods, with a particular emphasis on SAR technology. The module will guide you through the process of obtaining ALOS PALSAR data and applying essential pre-processing steps. You'll also learn to filter speckles from SAR imagery to improve data quality, and finally, you'll extract back-scatter values, a critical step for interpreting SAR data. By the end of this section, you'll have a solid foundation in working with active remote-sensing data

涵盖的内容

5个视频3个作业

位教师

Packt - Course Instructors
Packt
971 门课程231,340 名学生

提供方

Packt

从 Environmental Science and Sustainability 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题