In the course "Training AI with Humans", you'll delve into the intersection of machine learning and human collaboration, exploring how to enhance AI performance through effective data annotation and crowdsourcing. You’ll gain a comprehensive understanding of machine learning principles and performance metrics while developing practical skills in using platforms like Amazon Mechanical Turk (AMT) for crowdsourced tasks. This unique approach combines theoretical knowledge with hands-on experience, allowing you to implement Inter-Annotator Agreement (IAA) techniques to ensure high-quality annotated data.


您将学到什么
Learn to construct and evaluate various machine learning classifiers and performance metrics.
Master the calculation and implications of Inter-Annotator Agreement (IAA) for data consistency.
Understand how to design and implement effective crowdsourcing tasks using Amazon Mechanical Turk.
Analyze crowdsourced data to enhance machine learning models and understand ethical considerations in AI.
您将获得的技能
要了解的详细信息

添加到您的领英档案
15 项作业
了解顶级公司的员工如何掌握热门技能

积累特定领域的专业知识
- 向行业专家学习新概念
- 获得对主题或工具的基础理解
- 通过实践项目培养工作相关技能
- 获得可共享的职业证书

该课程共有6个模块
This course explores the intersection of machine learning (ML) and human input through various methodologies and tools. Spanning five modules, you will gain a comprehensive understanding of machine learning techniques, the role of human annotation in ML performance, and the principles and practices of crowdsourcing. The course covers key aspects of designing and implementing crowdsourced studies, calculating inter-annotator agreements, and leveraging crowdsourcing to enhance ML performance. Practical skills will be developed through hands-on activities using platforms like Amazon Mechanical Turk (AMT) and analyzing the data collected from such platforms.
涵盖的内容
1篇阅读材料1个插件
In this module, you will be introduced to the fundamentals of machine learning (ML). You will learn the definition and principles of ML, and gain practical skills in calculating and comparing ML performance metrics. You will get a chance to understand how to construct ML classifiers and analyze their effectiveness across different algorithms. This module prepares you to apply ML techniques effectively in various domains, enhancing your ability to solve complex problems using data-driven approaches.
涵盖的内容
5个视频2篇阅读材料3个作业1个非评分实验室
In this module, you will explore the significance of IAA in Machine Learning (ML) performance. You will learn to calculate IAA manually and implement Krippendorf’s Alpha using the software. You will gain insights into how IAA impacts the reliability of annotated data and its implications for ML model training. This module equips you with essential skills to ensure consistency and reliability in data annotation processes, crucial for effective ML applications.
涵盖的内容
3个视频2篇阅读材料3个作业
In this module, you will be introduced to the concept and practical applications of crowdsourcing. You will get a chance to learn how crowdsourcing enhances problem-solving through collective efforts and explore real-world use cases. You will be able to establish your first Amazon Mechanical Turk (AMT) account and understand the platform's capabilities for executing crowdsourced tasks. You will get a chance to delve into crowdsourcing design principles to optimize task efficiency and reliability. This module prepares you to leverage crowdsourcing effectively for diverse applications, from data annotation to research experiments.
涵盖的内容
4个视频1篇阅读材料3个作业1个非评分实验室
This module focuses on leveraging Amazon Mechanical Turk (AMT) for crowdsourcing studies. You will learn to design effective experiments using AMT, ensuring optimal task design and participant engagement. You will be able to collect data through AMT and perform initial analyses to derive meaningful insights from crowdsourced data. You will also understand the implications of AMT addiction and ethical considerations in platform-based research. This module equips you with practical skills to conduct reliable and insightful crowdsourcing studies using AMT.
涵盖的内容
2个视频3篇阅读材料3个作业1个非评分实验室
This module explores the intersection of crowdsourcing and ML performance enhancement. You will be able to evaluate how Inter-Annotator Agreement (IAA) affects ML model reliability and accuracy. You will explore case studies such as COVID test kit distribution and organ transplant matching to understand real-world applications. You will learn to optimize ML performance through effective crowdsourcing design, ensuring data quality and reliability in machine learning applications.
涵盖的内容
4个视频3篇阅读材料3个作业
获得职业证书
将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。
位教师

从 Software Development 浏览更多内容
- 状态:免费试用
DeepLearning.AI
- 状态:预览
- 状态:免费试用
Scrimba
- 状态:预览
DeepLearning.AI
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,