Coursera
Validate LLM Embeddings for Production Use

以 199 美元(原价 399 美元)购买一年 Coursera Plus,享受无限增长。立即节省

Coursera

Validate LLM Embeddings for Production Use

Starweaver
Ritesh Vajariya

位教师:Starweaver

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Apply sentence-transformers to embed documents and validate recall using FAISS vector indices and systematic retrieval tests.

  • Diagnose embedding issues by visualizing with UMAP, spotting anomalies, and cleaning data via cluster analysis workflows.

  • Evaluate embedding models on cost, latency, and accuracy to recommend the best candidates for production deployment.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

December 2025

作业

1 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Build Next-Gen LLM Apps with LangChain & LangGraph 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有3个模块

Generate semantic embeddings from text documents using sentence-transformer models, construct efficient FAISS vector indices for scalable nearest-neighbor search, and systematically validate retrieval quality through test query sets with quantitative recall@k metrics. Learn to diagnose search failures, identify patterns in low-performing queries, and establish baseline performance benchmarks essential for production deployment.

涵盖的内容

4个视频2篇阅读材料1次同伴评审

Apply UMAP dimensionality reduction to project high-dimensional embeddings into interpretable 2D visualizations, revealing semantic clustering patterns and data quality issues. Systematically identify anomalous clusters, scattered outliers, and unexpected category groupings that signal poor metadata, mislabeled content, or model limitations. Translate visual insights into prioritized data cleanup workflows that address root causes and measurably improve embedding quality.

涵盖的内容

3个视频1篇阅读材料1次同伴评审

Systematically benchmark embedding models across accuracy, inference latency, and infrastructure cost to make data-driven deployment decisions. Develop weighted decision frameworks that balance production constraints like query throughput, budget limits, and user experience requirements. Design comprehensive monitoring strategies to detect performance regressions and ensure sustained quality in deployed semantic search systems.

涵盖的内容

4个视频1篇阅读材料1个作业2次同伴评审

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Starweaver
Coursera
463 门课程912,050 名学生

提供方

Coursera

从 Cloud Computing 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'

常见问题