Coursera Instructor Network
Zero-Shot & Few-Shot Learning: Master AI with Minimal Data
Coursera Instructor Network

Zero-Shot & Few-Shot Learning: Master AI with Minimal Data

Hurix Digital

位教师:Hurix Digital

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

September 2025

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有3个模块

In this introductory lesson, learners will explore the core principles of zero-shot and few-shot learning, including how they In this introductory lesson, learners will explore the core principles of zero-shot and few-shot learning, including how they differ In this introductory lesson, learners will explore the core principles of zero-shot and few-shot learning, including how they differ from traditional supervised learning. Through clear examples and intuitive analogies, learners will build a foundational understanding of these approaches and why they matter in modern machine learning.understanding of these approaches and why they matter in modern machine learning.understanding of these approaches and why they matter in modern machine learning.

涵盖的内容

3个视频3篇阅读材料1个作业1个插件

In this lesson, learners will examine how pretrained models, semantic embeddings, and transfer learning enable generalization in low-data environments. They'll break down each component’s role through hands-on exercises and visualizations—gaining clarity on how models can recognize patterns or make predictions with minimal labeled data.

涵盖的内容

4个视频2篇阅读材料1个作业1个插件

In this lesson, learners will evaluate and apply zero-shot and few-shot strategies—such as prompt engineering, meta-learning, and prototypical networks—to real-world tasks. Through scenario-based activities and model comparisons, learners will learn how to choose and implement the right method based on data limitations and task requirements.

涵盖的内容

4个视频1篇阅读材料3个作业1个插件

位教师

Hurix Digital
Coursera Instructor Network
4 门课程98 名学生

提供方

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题

¹ 本课程的部分作业采用 AI 评分。对于这些作业,将根据 Coursera 隐私声明使用您的数据。