IBM
IBM Deep Learning with PyTorch, Keras and Tensorflow 专业证书
IBM

IBM Deep Learning with PyTorch, Keras and Tensorflow 专业证书

Fast-track your deep learning engineering career. Build the deep learning expertise employers are looking for in just 3 months

Wojciech 'Victor' Fulmyk
Ricky Shi
Aman Aggarwal

位教师:Wojciech 'Victor' Fulmyk

9,292 人已注册

包含在 Coursera Plus

获得职业证书,展示您的专业知识
4.4

(186 条评论)

中级 等级

推荐体验

2 月 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
获得职业证书,展示您的专业知识
4.4

(186 条评论)

中级 等级

推荐体验

2 月 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Job-ready deep learning skills using PyTorch, Keras, and TensorFlow employers are looking for - in just 3 months!

  • How to create shareable projects, deep learning models, and neural networks using Keras and PyTorch.

  • How to train linear and logistic regression models, optimize with gradient descent using PyTorch, and create custom models with Keras.

  • How to build advanced CNNs and transformer models and build CNNs with effective layers and activations… and more.

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

借助热门技能来开拓您的职业生涯

  • 接受 IBM 的专业级培训
  • 展现您对技术的精通程度
  • 通过 IBM 获得雇主认可的证书

专业认证 - 5门课程系列

您将学到什么

  • Describe the foundational concepts of deep learning, neurons, and artificial neural networks to solve real-world problems

  • Explain the core concepts and components of neural networks and the challenges of training deep networks

  • Build deep learning models for regression and classification using the Keras library, interpreting model performance metrics effectively.

  • Design advanced architectures, such as CNNs, RNNs, and transformers, for solving specific problems like image classification and language modeling

您将获得的技能

类别:Deep Learning
类别:Keras (Neural Network Library)
类别:Artificial Neural Networks
类别:Regression Analysis
类别:Network Architecture
类别:Image Analysis
类别:Natural Language Processing
类别:Machine Learning Methods
类别:Tensorflow
类别:Network Model
类别:Computer Vision
类别:Machine Learning
Deep Learning with Keras and Tensorflow

Deep Learning with Keras and Tensorflow

第 2 门课程23小时

您将学到什么

  • Create custom layers and models in Keras and integrate Keras with TensorFlow 2.x

  • Develop advanced convolutional neural networks (CNNs) using Keras

  • Develop Transformer models for sequential data and time series prediction

  • Explain key concepts of Unsupervised learning in Keras, Deep Q-networks (DQNs), and reinforcement learning

您将获得的技能

类别:Keras (Neural Network Library)
类别:Tensorflow
类别:Deep Learning
类别:Unsupervised Learning
类别:Performance Tuning
类别:Reinforcement Learning
类别:Generative AI
类别:Machine Learning Methods
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Natural Language Processing
类别:Artificial Neural Networks
类别:Artificial Intelligence

您将学到什么

  • Job-ready PyTorch skills employers need in just 6 weeks

  • How to implement and train linear regression models from scratch using PyTorch’s functionalities

  • Key concepts of logistic regression and how to apply them to classification problems

  • How to handle data and train models using gradient descent for optimization 

您将获得的技能

类别:PyTorch (Machine Learning Library)
类别:Regression Analysis
类别:Artificial Neural Networks
类别:Tensorflow
类别:Data Manipulation
类别:Predictive Modeling
类别:Deep Learning
类别:Machine Learning
类别:Probability & Statistics
Deep Learning with PyTorch

Deep Learning with PyTorch

第 4 门课程20小时

您将学到什么

  • Key concepts on Softmax regression and understand its application in multi-class classification problems.

  • How to develop and train shallow neural networks with various architectures.

  • Key concepts of deep neural networks, including techniques like dropout, weight initialization, and batch normalization.

  • How to develop convolutional neural networks, apply layers and activation functions.

您将获得的技能

类别:Deep Learning
类别:PyTorch (Machine Learning Library)
类别:Artificial Neural Networks
类别:Supervised Learning
类别:Machine Learning
类别:Network Architecture
类别:Computer Vision
AI Capstone Project with Deep Learning

AI Capstone Project with Deep Learning

第 5 门课程14小时

您将学到什么

  • Demonstrate your hands-on skills in building deep learning models using Keras and PyTorch to solve real-world image classification problems

  • Showcase your expertise in designing and implementing a complete deep learning pipeline, including data loading, augmentation, and model validation

  • Highlight your practical skills in applying CNNs and vision transformers to domain-specific challenges like geospatial land classification

  • Communicate your project outcomes effectively through a model evaluation

您将获得的技能

类别:PyTorch (Machine Learning Library)
类别:Keras (Neural Network Library)
类别:Deep Learning
类别:Computer Vision
类别:Artificial Intelligence
类别:Python Programming
类别:Machine Learning
类别:Machine Learning Methods

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Wojciech 'Victor' Fulmyk
IBM
8 门课程83,012 名学生
Ricky Shi
IBM
1 门课程48,809 名学生

提供方

IBM

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题

¹ 基于美国 2021 年 Cousera 学生结果调查的结果。