IBM
IBM RAG and Agentic AI 专业证书
IBM

IBM RAG and Agentic AI 专业证书

Build real-world AI with RAG and agentic AI. Use AI tools to streamline automation, drive innovation & take your career further, faster.

IBM Skills Network Team
Wojciech 'Victor' Fulmyk
Faranak Heidari

位教师:IBM Skills Network Team

23,840 人已注册

包含在 Coursera Plus

获得职业证书,展示您的专业知识
4.6

(314 条评论)

高级设置 等级

推荐体验

8 周 完成
在 3 小时 一周
灵活的计划
自行安排学习进度
获得职业证书,展示您的专业知识
4.6

(314 条评论)

高级设置 等级

推荐体验

8 周 完成
在 3 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Build the  job-aligned GenAI skills and hands-on experience to create RAG, multimodal, and agentic AI applications employers need in just 3 months

  • Learn to design and chain AI tools with LangChain for modular, reusable gen AI workflows

  • Implement function calling, RAG, and vector stores to build intelligent, context-aware applications

  • Create autonomous AI agents using LangGraph, CrewAI, and AG2 for real-world impact

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)
最近已更新!

May 2025

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

专业认证 - 8门课程系列

您将学到什么

  • Master the basics of GenAI and the LangChain framework, focusing on how prompt engineering and in-context learning to enhance AI interactions

  • Apply prompt templates, chains, and agents to create flexible and context-aware AI applications using LangChain's modular approach

  • Develop a GenAI web application with Flask, integrating advanced features such as JSON output parsing for structured AI responses

  • Evaluate and compare different language models to select the most suitable for specific use cases, ensuring optimal performance and reliability

您将获得的技能

类别:Generative AI
类别:LangChain
类别:Prompt Engineering
类别:Application Development
类别:LLM Application
类别:Debugging
类别:Software Development
类别:Flask (Web Framework)
类别:Generative AI Agents
Build RAG Applications: Get Started

Build RAG Applications: Get Started

第 2 门课程6小时

您将学到什么

  • Develop a practical understanding of Retrieval-Augmented Generation (RAG)

  • Design user-friendly, interactive interfaces for RAG applications using Gradio

  • Learn about LlamaIndex, its uses in building RAG applications, and how it contrasts with LangChain

  • Build RAG applications using LangChain and LlamaIndex in Python

您将获得的技能

类别:Prompt Engineering
类别:Jupyter
类别:LLM Application

您将学到什么

  • Differentiate between vector databases and traditional databases based on their functionality and use cases

  • Execute fundamental database operations in ChromaDB, including updating, deleting, and managing collections

  • Understand and apply similarity search techniques, both manually and with ChromaDB, and develop recommendation systems using these techniques

  • Develop a thorough and comprehensive understanding of key internal mechanisms within RAG

您将获得的技能

类别:Databases
类别:Database Architecture and Administration
类别:Artificial Intelligence
类别:Query Languages
类别:NoSQL
类别:Applied Machine Learning
类别:LLM Application
类别:Generative AI
类别:Data Storage Technologies
类别:Data Storage
类别:Information Management

您将学到什么

  • Build RAG applications using vector databases and advanced retrieval patterns

  • Employ the core mechanics of Vector Databases such as FAISS and Chroma DB and implement indexing algorithms like HNSW

  • Implement advanced retrievers using LlamaIndex and LangChain to improve the quality of LLM responses

  • Develop comprehensive RAG applications by integrating LangChain, FAISS, and front-end user interfaces built using Gradio

您将获得的技能

类别:Application Development
类别:Database Management Systems
类别:LLM Application
类别:Scalability
类别:Performance Tuning
类别:Natural Language Processing
类别:Semantic Web
类别:Generative AI
类别:Large Language Modeling
类别:UI Components

您将学到什么

  • Build the job-ready skills you need to build multimodal generative AI applications in just 3 weeks

  • Understand the fundamental concepts and challenges in multimodal AI, including the integration of text, speech, images, and video

  • Build multimodal AI applications using state-of-the-art models and frameworks such as IBM’s Granite, Meta’s Llama, OpenAI’s Whisper, DALL·E and Sora

  • Develop multimodal AI solutions, including chatbots and image/video generation models, using IBM watsonx.ai, Hugging Face, Flask and Gradio

您将获得的技能

类别:Multimodal Prompts
类别:Flask (Web Framework)
类别:Prompt Engineering
类别:Web Development
类别:Application Deployment
类别:Software Development
类别:Web Applications
类别:OpenAI
类别:LLM Application
Fundamentals of Building AI Agents

Fundamentals of Building AI Agents

第 6 门课程11小时

您将学到什么

  • Develop AI agents that can reason and perform tasks independently

  • Implement tool calling and chaining to create structured AI workflows

  • Utilize built-in LangChain agents to analyze data, generate visualizations, and execute database queries

  • Apply best practices in prompt engineering and tool calling to enhance AI agent performance

您将获得的技能

类别:LangChain
类别:Tool Calling
类别:Generative AI Agents
类别:Agentic systems
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Software Development
类别:Application Development
类别:LLM Application
Agentic AI with LangChain and LangGraph

Agentic AI with LangChain and LangGraph

第 7 门课程10小时

您将学到什么

  • Build agentic AI systems using LangChain and LangGraph to support memory, iteration, and conditional logic

  • Design and implement self-improving agents using Reflection, Reflexion, and ReAct architectures

  • Apply agent orchestration techniques to build collaborative multi-agent systems

  • Implement agentic RAG systems that route queries and support retrieval-enhanced reasoning

您将获得的技能

类别:LangGraph
类别:Agentic systems
类别:LangChain
类别:Generative AI Agents
类别:Generative AI
类别:Data Science
类别:Software Development
类别:Responsible AI
类别:LLM Application
类别:Python Programming
类别:Collaborative Software
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Real Time Data
类别:System Design and Implementation

您将学到什么

  • Design optimized AI systems by selecting and combining appropriate agentic frameworks and architectural patterns

  • Implement AI workflow patterns using agentic design principles and LangGraph

  • Build structured multi-agent workflows using CrewAI, including agents, tasks, and custom tools

  • Develop AI applications with BeeAI and design conversation-driven interactions using AG2 (AutoGen)

您将获得的技能

类别:Generative AI Agents
类别:Agentic systems
类别:Data Validation
类别:LLM Application
类别:Large Language Modeling
类别:Application Design
类别:Tool Calling
类别:Software Design Patterns
类别:Application Development

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

IBM Skills Network Team
IBM
83 门课程1,540,397 名学生
Wojciech 'Victor' Fulmyk
IBM
8 门课程83,012 名学生
Faranak Heidari
IBM
3 门课程11,430 名学生

提供方

IBM

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题

¹ Median salary and job opening data are sourced from Lightcast™ Job Postings Report. Content Creator, Machine Learning Engineer and Salesforce Development Representative (1/1/2024 - 12/31/2024) All other job roles (10/1/2024 - 10/1/2025)