Coursera
Agentic AI Performance & Reliability 专项课程

以 199 美元(原价 399 美元)购买一年 Coursera Plus,享受无限增长。立即节省

Coursera

Agentic AI Performance & Reliability 专项课程

Build Reliable Production AI Systems. Deploy, monitor, and optimize AI models with automated pipelines and real-time performance tracking.

LearningMate

位教师:LearningMate

包含在 Coursera Plus

深入学习学科知识
中级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入学习学科知识
中级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Build automated MLOps pipelines for deploying, monitoring, and retraining AI models in production environments

  • Implement real-time anomaly detection and performance monitoring systems with KPI dashboards and automated alerts.

  • Design feedback loops and reproducible workflows to ensure AI reliability and continuous improvement at scale.

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)
最近已更新!

December 2025

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

精进特定领域的专业知识

  • 向大学和行业专家学习热门技能
  • 借助实践项目精通一门科目或一个工具
  • 培养对关键概念的深入理解
  • 通过 Coursera 获得职业证书

专业化 - 7门课程系列

您将学到什么

  • Partition data fairly, monitor models for drift using PSI/KL divergence, and build automated retraining pipelines for reliable, production-grade AI.

您将获得的技能

类别:Probability & Statistics
类别:Model Deployment
类别:Data Preprocessing
类别:Time Series Analysis and Forecasting
类别:Data Integrity
类别:Continuous Monitoring
类别:MLOps (Machine Learning Operations)
类别:Anomaly Detection
类别:Data Maintenance
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Model Evaluation
类别:Artificial Intelligence
类别:Statistical Methods
类别:Machine Learning

您将学到什么

  • Implement real-time anomaly detection to find critical outliers and differentiate true system failures from benign data drift in AI systems.

您将获得的技能

类别:Threat Detection
类别:Exploratory Data Analysis
类别:Anomaly Detection
类别:MLOps (Machine Learning Operations)
类别:Trend Analysis
类别:Event Monitoring
类别:Time Series Analysis and Forecasting
类别:Real Time Data
类别:System Monitoring
类别:Continuous Monitoring
类别:Unsupervised Learning
类别:Statistical Analysis
类别:Statistical Methods
类别:Performance Tuning
Automate, Analyze, and AI Feedback

Automate, Analyze, and AI Feedback

第 3 门课程2小时

您将学到什么

  • Design automated feedback loops to capture human insights, analyze model performance, and retrain AI to meet specific operational goals.

您将获得的技能

类别:Statistical Methods
类别:Applied Machine Learning
类别:Anomaly Detection
类别:Statistical Modeling
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:MLOps (Machine Learning Operations)
类别:Performance Metric
类别:Sampling (Statistics)
类别:Model Evaluation
类别:Model Deployment
类别:Performance Analysis
类别:Human Machine Interfaces
类别:Predictive Analytics

您将学到什么

  • Aggregate agent performance data and apply statistical A/B tests to objectively measure and validate improvements in AI systems.

您将获得的技能

类别:Performance Metric
类别:Agentic systems
类别:Key Performance Indicators (KPIs)
类别:AI Workflows
类别:Performance Testing
类别:Statistical Methods
类别:Statistical Inference
类别:Event Monitoring
类别:Data-Driven Decision-Making
类别:Statistical Hypothesis Testing
类别:Data Analysis
类别:Correlation Analysis
类别:LangChain
类别:Business Metrics
类别:CrewAI
类别:Data Transformation
类别:Descriptive Analytics
类别:Statistical Analysis
类别:Generative AI Agents
类别:Business Intelligence

您将学到什么

  • Design dashboards and automated alerts, translating complex AI performance data into clear, actionable insights for stakeholders.

您将获得的技能

类别:Continuous Monitoring
类别:Data Storytelling
类别:System Monitoring
类别:Dashboard
类别:Data Visualization Software
类别:Budget Management
类别:Decision Making
类别:Data Visualization
类别:Key Performance Indicators (KPIs)
类别:Performance Metric
类别:Performance Analysis
类别:Business Intelligence
类别:Cost Management

您将学到什么

  • Develop core data preparation and exploration skills for AI. Implement data validation and visualization to ensure high-quality data for models.

您将获得的技能

类别:Performance Tuning
类别:Data Preprocessing
类别:Data Visualization

您将学到什么

  • Learners will apply statistical analysis for sampling and build reproducible data workflows using parameterization and data versioning.

您将获得的技能

类别:Sample Size Determination
类别:Data Science
类别:Data Management
类别:Software Documentation
类别:Data Collection
类别:Data-Driven Decision-Making
类别:Analytics
类别:MLOps (Machine Learning Operations)
类别:Analytical Skills
类别:Data Strategy
类别:Data Analysis
类别:Version Control
类别:Research and Design
类别:Jupyter
类别:Statistical Analysis
类别:Data Mining

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

LearningMate
Coursera
51 门课程182 名学生

提供方

Coursera

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'

常见问题