Johns Hopkins University
Foundations of Neural Networks 专项课程

通过 Coursera Plus 获取 10,000 多门课程的 Accessibility

Johns Hopkins University

Foundations of Neural Networks 专项课程

Master Neural Networks for AI and Machine Learning. Gain hands-on experience with neural networks, advanced techniques, and ethical AI practices to solve real-world challenges in machine learning and AI applications.

Zerotti Woods

位教师:Zerotti Woods

包含在 Coursera Plus

深入学习学科知识
4.5

(7 条评论)

中级 等级

推荐体验

12 周 完成
在 4 小时 一周
灵活的计划
自行安排学习进度
深入学习学科知识
4.5

(7 条评论)

中级 等级

推荐体验

12 周 完成
在 4 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Understand the mathematical foundations of neural networks, including deep learning optimization, regularization, and ethical considerations in AI.

  • Gain hands-on experience in implementing and analyzing various neural network architectures, such as CNNs, RNNs, and GANs, using Python.

  • Explore topics like probabilistic models, model evaluation, and bias mitigation, preparing for real-world applications in AI and deep learning.

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

精进特定领域的专业知识

  • 向大学和行业专家学习热门技能
  • 借助实践项目精通一门科目或一个工具
  • 培养对关键概念的深入理解
  • 通过 Johns Hopkins University 获得职业证书

专业化 - 3门课程系列

Introduction to Neural Networks

Introduction to Neural Networks

第 1 门课程18小时

您将学到什么

  • Understand the foundational mathematics and key concepts driving neural networks and machine learning.

  • Analyze and apply machine learning algorithms, optimization methods, and loss functions to train and evaluate models effectively.

  • Explore the design and structure of feedforward neural networks, using gradient descent to optimize and train deep models.

  • Investigate convolutional neural networks, their elements, and how they apply to real-world problems like image processing and computer vision.

您将获得的技能

类别:Deep Learning
类别:Artificial Neural Networks
类别:Machine Learning
类别:Supervised Learning
类别:Machine Learning Algorithms
类别:Network Architecture
类别:Computer Vision
类别:Algorithms
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Applied Machine Learning
类别:Performance Tuning
类别:Linear Algebra
类别:Image Analysis
类别:Statistical Methods
Advanced Neural Network Techniques

Advanced Neural Network Techniques

第 2 门课程10小时

您将学到什么

  • Analyze and implement Recurrent Neural Networks (RNNs) to process sequence data and solve tasks like time series prediction and language modeling.

  • Explore autoencoders for data compression, feature extraction, and anomaly detection, along with their applications in diverse fields.

  • Develop and evaluate generative models, such as GANs, understanding their mathematical foundations and deployment challenges.

  • Apply reinforcement learning techniques using Markov Chains and deep neural networks to tackle complex decision-making problems.

您将获得的技能

类别:Reinforcement Learning
类别:Generative AI
类别:Artificial Neural Networks
类别:Deep Learning
类别:Machine Learning Methods
类别:Unsupervised Learning
类别:Natural Language Processing
类别:Artificial Intelligence
类别:Markov Model
类别:Data Ethics

您将学到什么

  • Learners will gain hands-on experience training and debugging deep learning models while considering deployment challenges and best practices.

  • Students will understand and evaluate ethical concerns in AI, including bias, fairness, and the societal impact of deploying neural networks.

  • Learners will explore how to integrate structured probabilistic models with deep learning, reducing uncertainty and improving model decision-making.

您将获得的技能

类别:Data Ethics
类别:Deep Learning
类别:Responsible AI
类别:Information Privacy
类别:Case Studies
类别:Artificial Neural Networks
类别:Artificial Intelligence
类别:Bayesian Statistics
类别:Debugging
类别:Data-Driven Decision-Making
类别:Applied Machine Learning
类别:Machine Learning

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Zerotti Woods
Johns Hopkins University
3 门课程1,716 名学生

提供方

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题