Edureka

Mastering AI: Neural Nets, Vision System, Speech Recognition 专项课程

即将结束: 只需 199 美元(原价 399 美元)即可通过 Coursera Plus 学习新技能。立即节省

Edureka

Mastering AI: Neural Nets, Vision System, Speech Recognition 专项课程

Advance Your AI Skills with Deep Learning, Computer Vision & Speech Recognition. In this AI specialization, dive deep into neural networks, vision systems, and enable speech recognition using real-world tools. Designed for learners ready to advance their AI careers.

Edureka

位教师:Edureka

包含在 Coursera Plus

深入学习学科知识
3.4

(5 条评论)

中级 等级

推荐体验

4 月 完成
在 5 小时 一周
灵活的计划
自行安排学习进度
深入学习学科知识
3.4

(5 条评论)

中级 等级

推荐体验

4 月 完成
在 5 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Analyze and apply fundamental Python functions and methods.

  • Utilize and apply various machine learning models effectively.

  • Design and optimize neural networks for AI applications.

  • Explain and implement image, video, and audio processing methods.

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

精进特定领域的专业知识

  • 向大学和行业专家学习热门技能
  • 借助实践项目精通一门科目或一个工具
  • 培养对关键概念的深入理解
  • 通过 Edureka 获得职业证书

专业化 - 4门课程系列

Python and Statistics Foundations

Python and Statistics Foundations

第 1 门课程 11小时

您将学到什么

  • Write Python programs using core concepts like variables, data types, and control flow.

  • Apply NumPy and Pandas to manipulate and analyze data efficiently.

  • Create insightful data visualizations using Matplotlib, Seaborn, and Plotly for effective reporting.

  • Perform statistical analysis and probability tests to solve data-driven problems and validate hypotheses.

您将获得的技能

类别:Statistical Hypothesis Testing
类别:Pandas (Python Package)
类别:Python Programming
类别:NumPy
类别:Statistical Analysis
类别:Plotly
类别:Descriptive Statistics
类别:Data Visualization Software
类别:Probability & Statistics
类别:Seaborn
类别:Data Science
类别:Programming Principles
类别:Exploratory Data Analysis
类别:Data Analysis
类别:Data Visualization
类别:Matplotlib
类别:Probability Distribution
类别:Statistics
Applied Machine Learning with Python

Applied Machine Learning with Python

第 2 门课程 14小时

您将学到什么

  • Explore machine learning algorithms, including supervised, unsupervised, and semi-supervised methods.

  • Apply decision trees, random forests, and K-means clustering for classification and clustering.

  • Develop machine learning models to gain insights and make predictions from real-world data.

  • Enhance model accuracy by applying model-boosting techniques and evaluating their effectiveness.

您将获得的技能

类别:Supervised Learning
类别:Model Evaluation
类别:Machine Learning
类别:Driving engagement
类别:Data Analysis
类别:Classification Algorithms
类别:Machine Learning Methods
Practical Deep Learning with Python

Practical Deep Learning with Python

第 3 门课程 12小时

您将学到什么

  • Understand the core components of deep learning models and their role in AI.

  • Apply CNN, R-CNN, and Faster R-CNN for object detection tasks.

  • Implement RNNs and LSTMs for sequential data processing.

  • Optimize and evaluate deep learning models for improved performance.

您将获得的技能

类别:Recurrent Neural Networks (RNNs)
类别:Convolutional Neural Networks
类别:Python Programming
类别:Artificial Intelligence
类别:Applied Machine Learning
类别:Model Evaluation

您将学到什么

  • Analyze speech waveforms and apply audio signal processing techniques.

  • Develop and implement computer vision algorithms using OpenCV.

  • Perform morphological operations on images and videos for data manipulation.

  • Apply speech recognition techniques for digitizing and analyzing audio signals.

您将获得的技能

类别:Computer Vision
类别:Digital Signal Processing
类别:Applied Machine Learning

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Edureka
Edureka
131 门课程 127,731 名学生

提供方

Edureka

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'

常见问题