筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
“advanced machine learning” 的结果
- 状态:预览
IBM
您将获得的技能: 人工智能, 监督学习, 无监督学习, 机器学习, 分类与回归树 (CART), 预测建模, 数据科学, 强化学习, 性能指标, 深度学习
- 状态:新状态:免费试用
您将获得的技能: PyTorch (Machine Learning Library), Tensorflow, Natural Language Processing, Image Analysis, Deep Learning, Computer Vision, Artificial Neural Networks, Machine Learning Methods, Time Series Analysis and Forecasting, Forecasting, Network Architecture
- 状态:免费试用
Google Cloud
您将获得的技能: Feature Engineering, Prompt Engineering, Google Cloud Platform, Generative AI, Tensorflow, Keras (Neural Network Library), MLOps (Machine Learning Operations), Cloud Infrastructure, Data Pipelines, Cloud Platforms, Data Management, Data Governance, Workflow Management, Artificial Intelligence, Deep Learning, Applied Machine Learning, Machine Learning, Cloud Computing, Data Processing, Artificial Neural Networks
- 状态:免费试用
您将获得的技能: Supervised Learning, Data Modeling, Unsupervised Learning, Applied Machine Learning, Data Analysis, Reinforcement Learning, Artificial Intelligence, Classification And Regression Tree (CART), Tensorflow, Machine Learning Algorithms, Keras (Neural Network Library), Artificial Neural Networks, Deep Learning, Predictive Modeling, Machine Learning, Regression Analysis, Data Ethics, Responsible AI, Artificial Intelligence and Machine Learning (AI/ML), Random Forest Algorithm
- 状态:免费试用
您将获得的技能: Shiny (R Package), Deep Learning, Image Analysis, PyTorch (Machine Learning Library), Artificial Neural Networks, Artificial Intelligence and Machine Learning (AI/ML), Tensorflow, Classification And Regression Tree (CART), Unsupervised Learning, Predictive Modeling, Regression Analysis, Dimensionality Reduction, Network Architecture, Interactive Data Visualization, Time Series Analysis and Forecasting, Data Processing
- 状态:免费试用
DeepLearning.AI
您将获得的技能: 应用数学, 线性代数, Python 程序设计, 数据操作, 数据转换, 数据科学, Machine Learning 方法, 降维, 机器学习, 数学建模, NumPy
- 状态:预览
Duke University
您将获得的技能: 计算机视觉, Python 程序设计, 监督学习, Machine Learning 方法, 无监督学习, 人工神经网络, PyTorch(机器学习库), 机器学习, 强化学习, 应用机器学习, 自然语言处理, 深度学习, 医学影像, 图像分析
- 状态:免费试用
DeepLearning.AI
您将获得的技能: 应用数学, Python 程序设计, 数值分析, 衍生产品, 人工神经网络, 回归分析, 机器学习, 微积分, 深度学习, 数学建模
- 状态:免费试用
Fractal Analytics
您将获得的技能: 机器学习算法, 预测建模, 监督学习, 人工智能和机器学习(AI/ML), 决策树学习, 随机森林算法, 回归分析, 机器学习, 分类与回归树 (CART), 功能工程, 性能调整, Algorithm, 应用机器学习
- 状态:免费试用
您将获得的技能: Unsupervised Learning, Time Series Analysis and Forecasting, Supervised Learning, Machine Learning, Data Processing, Feature Engineering, Artificial Intelligence, Data Cleansing, Deep Learning, Statistical Analysis, Predictive Modeling, Classification And Regression Tree (CART), Regression Analysis
- 状态:免费试用
University of Illinois Urbana-Champaign
您将获得的技能: 计算机视觉, 预测建模, 监督学习, 无监督学习, 人工智能和机器学习(AI/ML), Machine Learning 方法, 人工神经网络, 健康信息学, PyTorch(机器学习库), 机器学习, 医疗保健, 应用机器学习, 图论, 计划发展, 生成模型架构, 医学科学与研究, 深度学习, 大数据, 张力流, 图像分析
- 状态:免费试用
DeepLearning.AI
您将获得的技能: 统计建模, Python 程序设计, 人工智能, 预测建模, 监督学习, 回归分析, 机器学习, 分类与回归树 (CART), 应用机器学习, Jupyter, NumPy, Scikit-learn (机器学习库), 功能工程, 数据转换
与 advanced machine learning 相关的搜索
总之,以下是 10 最受欢迎的 advanced machine learning 课程
- 机器学习入门: IBM
- Learning Deep Learning: Unit 2: Pearson
- Machine Learning on Google Cloud: Google Cloud
- AI ML with Deep Learning and Supervised Models: Simplilearn
- Advanced Machine Learning and Deep Learning: Packt
- 机器学习和数据科学线性代数: DeepLearning.AI
- 机器学习概论: Duke University
- 机器学习和数据科学微积分: DeepLearning.AI
- 高级机器学习算法: Fractal Analytics
- NVIDIA: Fundamentals of Machine Learning: Whizlabs