筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
“learning theory” 的结果
- 状态:免费试用
Politecnico di Milano
您将获得的技能: 创新, 学习理论, 课程规划, 教学法, Open Source 技术, 学习策略, 教育材料, 以学生为中心的学习, 学生参与, 教学策略, 教学和课程设计, 课程开发
- 状态:免费试用
University of Colorado Boulder
您将获得的技能: 分类与回归树 (CART), 机器学习算法, 数据科学, 预测建模, 张力流, 监督学习, 决策树学习, Python 程序设计, 降维, 随机森林算法, 人工神经网络, Matplotlib, 应用机器学习, PyTorch(机器学习库), Keras(神经网络库), 深度学习, 无监督学习, 生成式人工智能, 机器学习, Scikit-learn (机器学习库)
- 状态:新状态:免费试用
Coursera
您将获得的技能: Supervised Learning, Unsupervised Learning, Time Series Analysis and Forecasting, Applied Machine Learning, Machine Learning Algorithms, Feature Engineering, Dimensionality Reduction, Machine Learning, Predictive Modeling, Predictive Analytics, Scikit Learn (Machine Learning Library), Forecasting, Data Processing, Anomaly Detection, Data Manipulation, Regression Analysis, Statistical Modeling, Data Transformation, Data Cleansing
- 状态:新状态:免费试用
您将获得的技能: Deep Learning, PyTorch (Machine Learning Library), Artificial Neural Networks, Artificial Intelligence and Machine Learning (AI/ML), Tensorflow, Large Language Modeling, Machine Learning, Python Programming, Algorithms, Network Architecture, Data Processing
- 状态:新状态:免费试用
Pearson
您将获得的技能: Large Language Modeling, Deep Learning, Prompt Engineering, Image Analysis, PyTorch (Machine Learning Library), Tensorflow, LLM Application, Computer Vision, Responsible AI, Natural Language Processing, Generative AI, Artificial Neural Networks, Data Ethics, Multimodal Prompts, Artificial Intelligence and Machine Learning (AI/ML), Applied Machine Learning, Machine Learning Methods, Artificial Intelligence, Application Deployment, Time Series Analysis and Forecasting
- 状态:免费试用
Imperial College London
您将获得的技能: 应用数学, 数据操作, 数据科学, 机器学习算法, 回归分析, 衍生产品, Algorithm, 降维, NumPy, 人工神经网络, Python 程序设计, 线性代数, 统计, 微积分, 统计分析, Jupyter, 概率与统计, 高等数学, 机器学习
是什么让您今天来到 Coursera?
- 状态:预览
National Taiwan University
您将获得的技能: Reinforcement Learning, Deep Learning, Theoretical Computer Science, Artificial Neural Networks, Artificial Intelligence, Machine Learning, Computational Logic, Supervised Learning, Computer Science, Decision Tree Learning, Unsupervised Learning, Algorithms
- 状态:免费试用
多位教师
您将获得的技能: 分类与回归树 (CART), 预测建模, 人工智能, 数据伦理, 无监督学习, 张力流, 决策树学习, 人工智能和机器学习(AI/ML), NumPy, Python 程序设计, 随机森林算法, 应用机器学习, 负责任的人工智能, 机器学习, 深度学习, Jupyter, 功能工程, 强化学习, 监督学习, Scikit-learn (机器学习库)
- 状态:新状态:免费试用
您将获得的技能: PyTorch (Machine Learning Library), Tensorflow, Natural Language Processing, Image Analysis, Deep Learning, Computer Vision, Artificial Neural Networks, Machine Learning Methods, Time Series Analysis and Forecasting, Forecasting, Network Architecture
- 状态:免费试用
University of Colorado Boulder
您将获得的技能: Statistical Modeling, Applied Machine Learning, Unsupervised Learning, Statistical Machine Learning, Regression Analysis, Classification And Regression Tree (CART), Statistical Methods, Decision Tree Learning, Data Science, Predictive Modeling, Statistical Analysis, Statistical Programming, Artificial Neural Networks, R Programming, Supervised Learning, Probability & Statistics, Advanced Analytics, Dimensionality Reduction, Random Forest Algorithm, Machine Learning
- 状态:新状态:免费试用
您将获得的技能: Large Language Modeling, Prompt Engineering, Image Analysis, PyTorch (Machine Learning Library), Deep Learning, Tensorflow, LLM Application, Computer Vision, Responsible AI, Generative AI, Data Ethics, Multimodal Prompts, Applied Machine Learning, Natural Language Processing, Machine Learning Methods, Artificial Neural Networks, Artificial Intelligence, Application Deployment, Network Model, Performance Tuning
- 状态:免费试用
University of Alberta
您将获得的技能: 人工智能, 机器学习算法, Algorithm, 预测建模, 监督学习, 模拟, 人工智能和机器学习(AI/ML), 人工神经网络, 线性代数, 概率分布, 马尔可夫模型, 功能工程, 性能测试, 强化学习, 深度学习, 机器学习, 抽样(统计), 性能调整, 伪代码
总之,以下是 10 最受欢迎的 learning theory 课程
- 设计学习创新: Politecnico di Milano
- 机器学习:理论与 Python 上机实践: University of Colorado Boulder
- Foundations of Machine Learning: Coursera
- Learning Deep Learning: Unit 1: Pearson
- Learning Deep Learning: Pearson
- 机器学习数学: Imperial College London
- 人工智慧:機器學習與理論基礎 (Artificial Intelligence - Learning & Theory): National Taiwan University
- 机器学习: DeepLearning.AI
- Learning Deep Learning: Unit 2: Pearson
- Statistical Learning for Data Science: University of Colorado Boulder