SkillUp
AI Technologies in Healthcare

Unlock access to 10,000+ courses with Coursera Plus. Start 7-Day free trial.

SkillUp

AI Technologies in Healthcare

Ramesh Sannareddy
SkillUp

位教师:Ramesh Sannareddy

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

9 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

9 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Identify key AI technologies in healthcare, including NLP, generative AI, and computer vision.

  • Explain how advanced AI models process clinical text, patient data, and medical images.

  • Analyze healthcare datasets to design and evaluate AI models using guided Jupyter labs.

  • Create an integrated AI solution combining NLP, generative AI, and computer vision tools.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

November 2025

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Artificial Intelligence for Healthcare 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

In this module, you will explore advanced natural language processing (NLP) techniques used to extract meaningful insights from clinical text. The module begins by examining how NLP transforms unstructured medical notes into structured data that supports clinical decision-making. You will learn how transformer-based models such as BERT, BioBERT, and ClinicalBERT enable key tasks like entity recognition and information extraction. Through guided labs, you will build end-to-end NLP pipelines that preprocess and structure clinical information for real-world applications. You will also explore how NLP powers automated medical coding, clinical documentation, and decision support systems in healthcare workflows. The module concludes with a look at key implementation challenges, including data privacy, model integration, and workflow alignment, preparing you to design NLP solutions that enhance accuracy and efficiency in healthcare.

涵盖的内容

7个视频4篇阅读材料3个作业5个插件

In this module, you will explore the use of generative AI in healthcare to enhance clinical reporting, decision support, and patient engagement. The module begins by introducing large language models (LLMs) and advanced prompting techniques, demonstrating how these models can be adapted and fine-tuned for medical applications. You will learn how generative AI produces structured radiology and pathology reports, supports clinical decision-making, and generates personalized treatment recommendations. Through hands-on labs, you will build systems that automate medical report generation (Lab 5) and develop conversational AI chatbots for patient education and triage (Lab 6). The module also covers best practices for evaluating the accuracy, clinical utility, and ethical considerations of AI-generated content, equipping you to implement generative AI solutions that improve efficiency, safety, and patient-centered care in healthcare settings.

涵盖的内容

5个视频2篇阅读材料3个作业3个插件

In this module, you’ll explore how computer vision and multimodal AI are revolutionizing medical imaging and diagnostics. You’ll learn how deep learning models such as CNNs and Vision Transformers detect diseases, identify anatomical structures, and enable applications like surgical guidance and patient monitoring. You’ll also examine how multimodal AI combines imaging data with clinical notes and lab results to enhance diagnostic accuracy. Through case-based examples, you’ll analyze model architectures, workflows, and evaluation methods, as well as key deployment factors like performance, regulatory standards, and workflow integration. By the end of this module, you’ll be able to evaluate and design AI-driven imaging workflows that improve clinical accuracy and patient outcomes.

涵盖的内容

5个视频3个作业4个插件

This final module integrates advanced AI technologies learned throughout the course to address a comprehensive healthcare challenge. You will develop a multimodal AI solution combining natural language processing for clinical text analysis, generative AI for medical content creation, and computer vision for diagnostic imaging. The project emphasizes real-world clinical application, requiring learners to build an end-to-end pipeline that processes diverse healthcare data types, generates actionable insights, and presents findings in a clinically relevant format suitable for healthcare professionals and stakeholders.

涵盖的内容

1个视频2篇阅读材料1个作业1次同伴评审1个讨论话题2个插件

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Ramesh Sannareddy
18 门课程467,507 名学生

提供方

SkillUp

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题

¹ 本课程的部分作业采用 AI 评分。对于这些作业,将根据 Coursera 隐私声明使用您的数据。