Whizlabs
AWS: Model Training , Optimization & Deployment
Whizlabs

AWS: Model Training , Optimization & Deployment

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

8 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

8 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Explore built-in algorithms in Amazon SageMaker such as Linear Learner, XGBoost, LightGBM, and k-NN for ML model development.

  • Configure key training parameters like epochs, batch size, and steps to train and evaluate ML models effectively.

  • Compare real-time and batch inference approaches to determine the best strategy for model deployment.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

September 2025

作业

6 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Exam Prep MLA-C01: AWS Machine Learning Engineer Assocaite 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有3个模块

Welcome to Week 1 of the AWS: Model Training, Optimization & Deployment course. This week, you’ll focus on building machine learning models using Amazon SageMaker’s built-in algorithms. We’ll begin by exploring popular algorithms such as Linear Learner, XGBoost, LightGBM, and k-Nearest Neighbors (k-NN), and understand their use cases in classification and regression tasks. You’ll then dive into the model training process, learning how to configure key parameters like epochs, batch size, and steps for optimized performance. Through hands-on demos, you’ll practice training models, splitting datasets into train-test sets, and preparing them for evaluation. We’ll conclude the week by comparing real-time vs. batch inference, helping you understand how to choose the appropriate inference strategy based on your workload and deployment needs.

涵盖的内容

10个视频2篇阅读材料2个作业1个讨论话题

Welcome to Week 2 of the AWS: Model Training, Optimization & Deployment course. This week, you'll focus on optimizing and managing machine learning models to ensure high performance and reliability in production environments. We'll begin by exploring SageMaker Model Debugger and SageMaker Experiments, which help monitor training jobs and compare experiment results efficiently. You’ll then dive into cross-validation techniques and learn how to apply hyperparameter tuning using both random search and Bayesian optimization methods to improve model accuracy. We’ll also cover model ensembling techniques, such as stacking and boosting, to combine multiple models for better predictive power. By the end of the week, you’ll learn how to manage model versions using SageMaker Model Registry, apply automatic model tuning, and implement strategies to detect and prevent overfitting or underfitting for building robust ML solutions.

涵盖的内容

9个视频1篇阅读材料2个作业

Welcome to Week 3 of the AWS: Model Training, Optimization & Deployment course. This week, you’ll focus on deploying machine learning models efficiently using scalable infrastructure and automation tools on AWS. We’ll begin by exploring compute options such as Amazon ECS, Amazon EKS, and AWS Lambda, followed by infrastructure management with AWS CloudFormation. You’ll learn how to implement auto scaling policies for ML workloads and choose the right SageMaker compute instance types (CPU vs. GPU) for different deployment scenarios. We'll also cover SageMaker Endpoint types, including serverless, asynchronous, and multi-model endpoints, to help you deliver predictions at scale. Finally, you’ll dive into workflow orchestration using Apache Airflow and SageMaker Pipelines, and understand the role of CI/CD principles in automating and streamlining ML deployments.

涵盖的内容

9个视频3篇阅读材料2个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Whizlabs Instructor
Whizlabs
132 门课程86,436 名学生

提供方

Whizlabs

从 Algorithms 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题