Welcome to Bayesian Statistical Concepts and Methods. In this course, you will use Bayesian methods in data analysis and modeling; work with posterior distributions, distributions without closed form, directed acyclic graphs, Markov Chain Monte Carlo algorithms; and employ R and the Stan platform for statistical modeling. You will also be introduced to Bayesian hierarchical models, which are useful for the interpretation of multi-level data (sub-group versus group).
只需 199 美元(原价 399 美元)即可通过 Coursera Plus 学习更高水平的技能。立即节省

您将学到什么
Participants will learn fundamentals of Bayesian concepts and methods, including Bayesian models, Bayesian networks, and Markov chain Monte Carlo.
您将获得的技能
要了解的详细信息

添加到您的领英档案
January 2026
3 项作业
了解顶级公司的员工如何掌握热门技能

该课程共有3个模块
This Specialization covers the use of statistical methods in today's business, industrial, and social environments, including several new methods and applications. H.G. Wells foresaw an era when the understanding of basic statistics would be as important for citizenship as the ability to read and write. Modern Statistics for Data-Driven Decision-Making teaches the basics of working with and interpreting data, skills necessary to succeed in Wells’s “new great complex world” that we now inhabit. In this course, learners will be able to use Bayesian methods in data analysis and modeling, to work with posterior distributions, distributions without closed form, directed acyclic graphs, and Markov chain Monte Carlo algorithms, and to use R and the Stan platform for statistical modeling. Learn more about the instructors who developed this course. Read the instructor bios and review the learning outcomes for the course.
涵盖的内容
5个视频3篇阅读材料1个作业
In Module 2, we will draw a Bayesian model as a graph and distinguish posterior distribution, posterior predictive distribution, and expected loss or cost. We will also calculate distributions without closed form, recognizing that we can use computational methods to draw from the distribution even when there's no straight-forward equation to define them. Be sure to review the learning objectives before beginning work in this module.
涵盖的内容
9个视频2篇阅读材料1个作业
In Module 3, we will employ R and the Stan platform for statistical modeling. You will explore Bayesian methods in data analysis and modeling; work with posterior distributions, distributions without closed form, directed acyclic graphs, and Markov Chain Monte Carlo algorithms. You will also be introduced to Bayesian hierarchical models, which estimate subgroup parameters relative to the parameters of a larger parent group. Be sure to view the course introduction video and review the learning objectives before beginning work in this module.
涵盖的内容
10个视频3篇阅读材料1个作业1次同伴评审
从 Probability and Statistics 浏览更多内容
状态:免费试用University of California, Santa Cruz
状态:免费试用University of California, Santa Cruz

Duke University
状态:免费试用Illinois Tech
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,





