University of Colorado Boulder
BiteSize Python: NumPy and Pandas
University of Colorado Boulder

BiteSize Python: NumPy and Pandas

Di Wu

位教师:Di Wu

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Understanding and utilizing the ndarray from the NumPy library.

  • Exploring the Series and DataFrame structures in the Pandas library.

  • Practical applications of advanced data structures in data analysis and manipulation.

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

5 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 BiteSize Python for Intermediate Learners 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有5个模块

This module introduces the ndarray, the core data structure of the NumPy library that allows for efficient manipulation of large, multi-dimensional arrays. It begins with an overview of what an ndarray is and compares its capabilities to Python's built-in list data structure. The module then covers how to create ndarray objects, access and manipulate both 1D and 2D arrays, and perform various operations on these arrays. By the end of this module, learners will gain a solid understanding of how to effectively use ndarray for numerical and data analysis tasks.

涵盖的内容

6篇阅读材料1个作业6个非评分实验室

This module delves deeper into the NumPy library, focusing on its powerful features and functionalities. It covers universal functions (ufuncs) that allow for element-wise operations on ndarray, enabling efficient computation across large datasets. The module also explores various statistical methods available in NumPy, linear algebra operations for solving mathematical problems, random number generation for simulations and modeling, and masking techniques for filtering data. By the end of this module, learners will be equipped with the skills to leverage NumPy's capabilities for advanced numerical analysis.

涵盖的内容

1篇阅读材料1个作业5个非评分实验室

This module introduces the Series data structure in Pandas, which is a one-dimensional labeled array capable of holding any data type. It begins by defining what a Series is and its significance in data analysis. The module covers various methods to create a Series, including using lists, dictionaries, and NumPy arrays. Learners will also explore how to access and manipulate elements within a Series, as well as perform mathematical operations on Series data. By the end of this module, students will understand how to utilize Series for effective data manipulation and analysis.

涵盖的内容

2篇阅读材料1个作业3个非评分实验室

This module introduces the DataFrame data structure in Pandas, which is a two-dimensional labeled data structure that can hold heterogeneous data types. The module begins by defining what a DataFrame is and its significance in data analysis and manipulation. Learners will explore various methods to create DataFrames from sources such as dictionaries, lists, and external files (e.g., CSV). The module covers how to access data within a DataFrame using labels and indices, manipulate rows and columns, and perform operations such as merging and concatenating multiple DataFrames. By the end of this module, students will be proficient in utilizing DataFrames for data manipulation tasks.

涵盖的内容

2篇阅读材料1个作业7个非评分实验室

This module provides an in-depth exploration of the Pandas library, which is essential for data manipulation and analysis in Python. It starts with an overview of what Pandas is and its significance in data science. The module highlights useful functionalities within Pandas, including data loading, cleaning, and preparation. Learners will examine how to generate descriptive statistics for both numerical and categorical columns, use the groupby() method for data aggregation, and handle missing and duplicate values effectively. By the end of this module, students will have a solid understanding of how to leverage Pandas for comprehensive data analysis.

涵盖的内容

2篇阅读材料1个作业6个非评分实验室

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Di Wu
University of Colorado Boulder
21 门课程53,915 名学生

提供方

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题