Ball State University
Statistical Methods for Data Science
Ball State University

Statistical Methods for Data Science

Munni Begum
Dr. Aihua Li

位教师:Munni Begum

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级
需要一些相关经验
4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
攻读学位
深入了解一个主题并学习基础知识。
中级 等级
需要一些相关经验
4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
攻读学位

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

7 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有5个模块

Welcome! In part 1 of this module you will complete a recommended reading about the course and post on a discussion board entry to introduce yourself to your classmates. In part 2 of this module, we will review probability theory and its applications to real-world problem-solving.  Probability is a measure of the chance of occurrence of a future event. For example, what is the probability that you will see two heads when you toss two coins? It is ¼, right? Why do you care about learning probability? Here is a quote by the ancient Greek philosopher Democritus “Everything existing in the universe is the fruit of chance”. Thus, it is important for us to have basic probability knowledge. In data science,  probability helps us understand how data is generated and plays a major role in inference and prediction.In this module, we will review three definitions of probability, probability laws, conditional probability, and Bayes' rule. Knowledge of conditional probability is essential in most practical problems. Bayes' rule provides a mechanism for determining conditional probabilities when prior probabilities are given. 

涵盖的内容

12个视频7篇阅读材料1个作业1次同伴评审1个非评分实验室

In this module, we will talk about random variables which are basically a mapping or correspondence between the sample space of a random experiment and the real number system.

涵盖的内容

10个视频6篇阅读材料2个作业1个非评分实验室

In this module, we will learn about discrete probability distributions based on what is known as Bernoulli Trials. You will learn about Bernoulli, Binomial, Geometric, and Negative Binomial Distributions. These distributions are widely used in numerous applications including health and biomedical sciences, social sciences, environmental sciences, finance and business, and education among others.

涵盖的内容

10个视频6篇阅读材料2个作业

This module covers continuous probability distributions. In the real world, not all random variables are discrete. For example, daily rainfall amount, the lifetime of an equipment, biological measures such as the body mass index or BMI and Cholesterol levels, and various test scores take values in intervals and are called continuous random variables.

涵盖的内容

11个视频8篇阅读材料1个作业1个编程作业1次同伴评审1个非评分实验室

In this module, we will revisit Normal distribution and its attractive properties. You will see how the law of large numbers can be used to approximate the distributions of sum or average of sample data.

涵盖的内容

14个视频5篇阅读材料1个作业1个编程作业1次同伴评审2个非评分实验室

攻读学位

课程 是 Ball State University提供的以下学位课程的一部分。如果您被录取并注册,您已完成的课程可计入您的学位学习,您的学习进度也可随之转移。

 

位教师

Munni Begum
Ball State University
3 门课程404 名学生
Dr. Aihua Li
Ball State University
4 门课程2,142 名学生

提供方

从 Probability and Statistics 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题