University of Pennsylvania
Single Variable Calculus
University of Pennsylvania

Single Variable Calculus

Robert Ghrist

位教师:Robert Ghrist

47,262 人已注册

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
4.6

(431 条评论)

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
84%
大多数学生喜欢此课程
深入了解一个主题并学习基础知识。
4.6

(431 条评论)

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
84%
大多数学生喜欢此课程

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

19 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有5个模块

It's time to redo calculus! Previously, all the calculus we have done is meant for functions with a continuous input and a continuous output. This time, we are going to retool calculus for functions with a <i>discrete</i> input. These are <i>sequences</i>, and they will occupy our attention for this last segment of the course. This first module will introduce the tools and terminologies for <b>discrete calculus</b>.

涵盖的内容

4个视频2篇阅读材料5个作业

That first module might have seemed a little...strange. It was! In this module, however, we will put that strangeness to good use, by giving a very brief introduction to the vast subjects of <b>numerical analysis</b>, answering such questions as <i>"how do we approximate solutions to differential equations?"</i> and <i>"how do we approximate definite integals?"</i> Perhaps unsurprisingly, Taylor expansion plays a pivotal role in these approximations.

涵盖的内容

2个视频1个作业

In "ordinary" calculus, we have seen the importance (and challenge!) of improper integrals over unbounded domains. Within discrete calculus, this converts to the problem of infinite sums, or <b>series</b>. The determination of convergence for such will occupy our attention for this module. I hope you haven't forgotten your big-O notation --- you are going to need it!

涵盖的内容

4个视频6个作业

This course began with an exploration of Taylor series -- an exploration that was, sadly, not as rigorous as one would like. Now that we have at our disposal all the tests and tools of discrete and continuous calculus, we can finally close the loop and make sense of what we've been doing when we Talyor-expand. This module will cover power series in general, from we which specify to our beloved Taylor series.

涵盖的内容

4个视频5个作业

Are we at the end? Yes, yes, we are. Standing on top of a high peak, looking back down on all that we have climbed together. Let's take one last look down and prepare for what lies above.

涵盖的内容

4个视频2篇阅读材料2个作业

位教师

授课教师评分
4.7 (73个评价)
Robert Ghrist
University of Pennsylvania
5 门课程201,749 名学生

提供方

从 Math and Logic 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'

学生评论

4.6

431 条评论

  • 5 stars

    81.20%

  • 4 stars

    10.90%

  • 3 stars

    2.78%

  • 2 stars

    0.92%

  • 1 star

    4.17%

显示 3/431 个

SG
5

已于 May 23, 2023审阅

DK
4

已于 Apr 10, 2021审阅

MJ
5

已于 Jun 10, 2019审阅

Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题