Northeastern University
Foundations for Data Analytics Part 2

Unlock access to 10,000+ courses with Coursera Plus

Northeastern University

Foundations for Data Analytics Part 2

Qurat-ul-Ain Azim

位教师:Qurat-ul-Ain Azim

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
初级 等级
无需具备相关经验
9 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
初级 等级
无需具备相关经验
9 小时 完成
灵活的计划
自行安排学习进度

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

July 2025

作业

13 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有7个模块

In this module, you will explore the realm of time series data, gaining a comprehensive understanding of its characteristics, components (trend, seasonality, and noise), and prevalent sources across diverse domains. Through effective visualization techniques and descriptive statistics, you will acquire the skills to recognize patterns and trends within time series data.

涵盖的内容

5个视频5篇阅读材料2个作业

This module focuses on feature extraction in time series data analysis, emphasizing the identification and utilization of diverse features. We will explore how these features capture essential information, enabling a comprehensive understanding of time series data. You will gain practical insights into the application of various feature types, enhancing your ability to extract meaningful patterns and make informed analyses in the dynamic field of time series data analysis.

涵盖的内容

5个视频5篇阅读材料3个作业

This module focuses on the comprehensive preprocessing and analysis of textual data. You will acquire practical skills in text data preprocessing, encompassing tasks such as tokenization, stemming, and stopword removal. We will discuss diverse methods for representing text data, including bag-of-words (BoW), Term Frequency-Inverse Document Frequency (TF-IDF), and word embeddings. We will also explore various text analysis techniques such as sentiment analysis, topic modeling, and named entity recognition. The practical application of these techniques enables you to extract meaningful insights, patterns, and nuanced meanings from textual data, empowering you to navigate and derive value from the intricate landscape of text analysis.

涵盖的内容

2个视频2篇阅读材料2个作业

In this module, we examine network theory, equipping you with a foundational understanding of nodes, edges, and graphs. We will explore various network types, from social networks to keyword co-occurrence networks, learning to discern their relevance in diverse domains. Practical application includes extracting and creating keyword co-occurrence networks from text data through preprocessing, keyword identification, and relationship construction. You will then analyze these networks, employing measures like centrality and community detection, enhancing your ability to interpret results. This module culminates in the extraction of meaningful insights, enabling you to identify keywords and thematic clusters within textual data through the lens of network analysis.

涵盖的内容

3个视频3篇阅读材料2个作业

In this module, we examine network theory, equipping you with a foundational understanding of nodes, edges, and graphs. We will explore various network types, from social networks to keyword co-occurrence networks, learning to discern their relevance in diverse domains. Practical application includes extracting and creating keyword co-occurrence networks from text data through preprocessing, keyword identification, and relationship construction. You will then analyze these networks, employing measures like centrality and community detection, enhancing your ability to interpret results. This module culminates in the extraction of meaningful insights, enabling you to identify keywords and thematic clusters within textual data through the lens of network analysis.

涵盖的内容

2个视频4篇阅读材料2个作业

In this module, you will inspect the intricate world of joint probability distributions. You will develop the skill to identify and interpret these distributions, employing probability mass functions (PMFs) for discrete variables and probability density functions (PDFs) for continuous variables. This module will further equip you with the capability to calculate and interpret marginal probability distributions, involving the summing or integrating of variables within a joint distribution. The theoretical insights and practical calculations will help you gain a complete understanding of the relationships between variables and the nuanced exploration of joint, marginal, and conditional probability distributions.

涵盖的内容

1个视频2篇阅读材料1个作业

In this module, you will explore the fundamental concept of mathematical expectation, or expected value, in probability theory. Through theory and practice, you will calculate the expected value for both discrete and continuous random variables, gaining insights into its significance as a measure of central tendency. We will also explore the statistical concepts of covariance and correlation, guiding participants in the calculation of coefficients to quantify relationships between pairs of random variables. Interpretation of these results allows you to classify the degree and direction of association through positive, negative, or zero covariance/correlation values. Additionally, the module addresses the concept of independence, elucidating its relationship with zero covariance and correlation.

涵盖的内容

3个视频5篇阅读材料1个作业

位教师

Qurat-ul-Ain Azim
Northeastern University
6 门课程871 名学生

提供方

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题