Arm
Getting Started with Machine Learning at the Edge on Arm
Arm

Getting Started with Machine Learning at the Edge on Arm

Arm Education

位教师:Arm Education

1,691 人已注册

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

9 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

9 小时 完成
灵活的计划
自行安排学习进度

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

31 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有6个模块

In this module, you will be introduced to key concepts in Machine Learning and learn why businesses now need this technology to be available on low-power devices.

涵盖的内容

3个视频2篇阅读材料3个作业

In this module, you will explore some of the key concepts in machine learning, such as feature extraction and classification models, in the context of signal processing. You will understand the importance of training and evaluation in the machine learning workflow, and the constraints involved when using microcontrollers for this. At the end of the module, you will complete a practical lab exercise, to implement some simple machine learning models for activity recognition, using accelerometer data. To do so, you will be shown how to use Anaconda and Python to work with datasets.

涵盖的内容

7个视频1篇阅读材料7个作业

This module dives deeper into a powerful and widely used model in Machine Learning: the artificial neural network. These can analyze large quantities of input data in complex ways, in order to solve classification problems, such as identifying objects in an image. In order to run neural networks on small microprocessors, these models need to be as streamlined as possible. So you will also look at the complexity of a typical neural network, and see some techniques to reduce this complexity, such as quantization. In the lab, you will continue building a classifier for activity recognition, but this time using a neural network on an Arm STM32 microprocessor. For this, you will be introduced to the TensorFlow Python library, which is also popular for many applications in machine learning.

涵盖的内容

6个视频1篇阅读材料5个作业

Neural networks can be used to solve complex classification problems, as you have already seen. In this module, you’ll discover a more advanced model: the convolutional neural network. These are important for image processing, as they can interpret relationships between adjacent pixels, but they are also used in other applications such as financial modeling. This is a new and modern technique so you’ll be learning about the cutting edge of machine learning, and the recent trends in this field. In the lab, you’ll develop a convolutional neural network for audio processing, and optimize it for both accuracy and performance. This would allow it to give good results on a small device without draining the battery or delaying the response.

涵盖的内容

5个视频1篇阅读材料5个作业

The algorithms used in modern machine learning can be very complex, and require many iterations of innovation and testing by computer scientists. This is especially true for the optimized algorithms required by microprocessors! Thankfully, you do not need to implement these algorithms yourself, as they are available in libraries, such as CMSIS-NN, developed by Arm. This module shows you how this library can be used for machine learning—for example for image processing using convolutional neural networks. In the lab exercise, you also have the opportunity to use CMSIS-NN to develop a simple model for the CIFAR-10 dataset, using CUBE AI.

涵盖的内容

5个视频1篇阅读材料5个作业

For machine learning to perform well, even on the smallest devices, it is essential to optimize the models to minimize their memory footprint and the number of operations required to perform inference tasks. In practice, this allows portable devices to be more responsive, and extends their battery life. In this last module, you’ll explore some of the cutting-edge techniques used to optimize neural networks, such as using fixed-point arithmetic in place of floating-point arithmetic. To consolidate your learning, you will develop the best machine learning model that you can, that would be able to run on an ArmCortex-M microprocessor, using a toolkit such as CMSIS-NN.

涵盖的内容

6个视频2篇阅读材料6个作业1个插件

位教师

Arm Education
Arm
6 门课程8,325 名学生

提供方

Arm

从 Algorithms 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题