SkillUp
Machine Learning for Medical Data

Unlock access to 10,000+ courses with Coursera Plus. Start 7-Day free trial.

SkillUp

Machine Learning for Medical Data

Ramesh Sannareddy
SkillUp

位教师:Ramesh Sannareddy

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Define supervised and unsupervised machine learning techniques used for healthcare datasets.

  • Apply preprocessing, feature engineering, and class-imbalance management techniques to real healthcare datasets.

  • Design and implement supervised learning models for disease prediction and clinical decision support tasks.

  • Evaluate model performance using precision-recall metrics, calibration, and external validation.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

November 2025

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Artificial Intelligence for Healthcare 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

This module focuses on applying supervised learning algorithms to healthcare datasets and clinical prediction tasks. Learners acquire the skills to select and implement appropriate supervised learning methods for disease risk prediction and treatment outcome modeling. Key areas include preprocessing clinical data, handling missing values, and engineering meaningful medical features to improve model accuracy and interpretability. The curriculum addresses class imbalance challenges common in healthcare through techniques like SMOTE, cost-sensitive learning, and appropriate evaluation metrics beyond accuracy. Through hands-on labs, students build practical models including diabetes risk predictors, clean real-world clinical datasets, and develop rare condition detectors using precision-recall evaluation methods for clinical applications.

涵盖的内容

8个视频4篇阅读材料4个作业6个插件

This module teaches unsupervised learning techniques for discovering hidden patterns in medical data without labeled outcomes. Students learn to apply clustering algorithms like K-means, hierarchical clustering, and DBSCAN for patient segmentation and personalized care strategies. The curriculum covers dimensionality reduction methods, including PCA, t-SNE, and UMAP, for simplifying high-dimensional healthcare datasets while preserving essential information. Key focus areas include interpreting unsupervised results for clinical relevance and translating abstract clusters into actionable treatment decisions. Through practical labs, students perform patient clustering analysis, visualize genomic data in reduced dimensions, and develop workflows for integrating unsupervised learning outcomes into electronic health record systems for real-world clinical applications.

涵盖的内容

4个视频2篇阅读材料4个作业3个插件

This module covers neural network applications for healthcare datasets, focusing on deep learning architectures tailored for medical contexts. Students learn to design and train neural networks for clinical prediction tasks, applying convolutional neural networks (CNNs) for medical imaging analysis and recurrent neural networks (RNNs) for sequential clinical data. The curriculum includes advanced CNN architectures like ResNet and DenseNet for radiology applications, plus LSTM networks for modeling patient timelines and predicting clinical deterioration. A key emphasis is placed on explainability methods, including saliency maps and Grad-CAM, to provide transparency in deep learning medical predictions. Through hands-on labs, students build disease detection systems, ICU risk prediction models, and implement interpretability techniques for clinical decision support.

涵盖的内容

6个视频3篇阅读材料4个作业3个插件

This capstone project consolidates the knowledge gained throughout the course and guides learners through a comprehensive, hands-on application of Machine Learning in healthcare. Learners will revisit key concepts while developing predictive models for disease detection using electronic health records and medical imaging data. Students engage in case-based problem-solving, implementing algorithms like neural networks while addressing healthcare-specific challenges, including data privacy, class imbalance, and model interpretability. Emphasis is placed on real-world clinical relevance, ethical AI practice, and professional readiness. Through validation testing, ethical analysis, and implementation recommendations, this capstone experience reinforces both conceptual mastery and practical competence in healthcare ML applications.

涵盖的内容

1个视频2篇阅读材料1个作业1次同伴评审1个讨论话题2个插件

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Ramesh Sannareddy
18 门课程467,507 名学生

提供方

SkillUp

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题

¹ 本课程的部分作业采用 AI 评分。对于这些作业,将根据 Coursera 隐私声明使用您的数据。