This course equips you with the essential skills to take generative AI models from development to production. You will learn to implement robust MLOps practices on Azure, including automated CI/CD pipelines, version control, and full lifecycle management for your models. Simultaneously, you will dive into the critical principles of Responsible AI, using Microsoft’s framework to build fair, transparent, and ethical models that you can deploy with confidence.
了解顶级公司的员工如何掌握热门技能

该课程共有4个模块
This module introduces the core principles of MLOps (machine learning operations), such as automation and reproducibility. Learners will explore the complete AI model lifecycle, from initial setup to deployment, and learn to manage these stages effectively using Azure ML and tools like MLflow.
涵盖的内容
5个视频6篇阅读材料3个作业
This module focuses on automating the AI development process. You will be introduced to the fundamentals of version control with Git, a critical skill for any professional developer. To support learners who may be new to this tool, this module will provide a practical guide to essential commands and demonstrate their use within Azure Repos. With this foundation, you will then build an end-to-end Continuous Integration/Continuous Deployment (CI/CD) pipeline in Azure to automatically train, validate, and deploy your models, turning your manual workflow into a robust, automated system.
涵盖的内容
3个视频5篇阅读材料3个作业
This module addresses the critical post-deployment phase of MLOps. Learners will implement robust monitoring and logging frameworks using tools like Azure Monitor, Application Insights, and MLflow to track model performance and ensure reliability. Additionally, they will explore and apply practical strategies for managing and optimizing the costs associated with training and hosting AI models in Azure.
涵盖的内容
3个视频6篇阅读材料3个作业
This module focuses on the critical importance of building trustworthy and ethical AI. Learners will explore foundational ethical principles like fairness and transparency. They will then learn to operationalize these concepts using Microsoft's Responsible AI framework and Azure's built-in tools to assess, track, and mitigate issues like bias in generative models.
涵盖的内容
4个视频5篇阅读材料2个作业
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
更多问题
提供助学金,






