Coursera
Optimize Java Memory for ML Performance

以 199 美元(原价 399 美元)购买一年 Coursera Plus,享受无限增长。立即节省

Coursera

Optimize Java Memory for ML Performance

Aseem Singhal
Starweaver

位教师:Aseem Singhal

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
高级设置 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
高级设置 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Analyze profiler output to diagnose memory bottlenecks using Java Flight Recorder by interpreting heap graphs, GC pauses, and object churn.

  • Optimize data structures to reduce GC overhead 15-30% by replacing inefficient collections, implementing object pooling, and using primitives.

  • Tune JVM parameters and GC settings for production ML workloads by configuring heap sizes and selecting appropriate GC algorithms.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

December 2025

作业

1 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有3个模块

This module establishes the foundation for understanding how Java manages memory in ML applications and why memory optimization is critical for performance. Learners will explore JVM architecture (heap, stack, metaspace), identify memory-intensive patterns common in ML pipelines (feature transformations, tensor manipulation, data preprocessing), and understand how garbage collection cycles impact model inference latency. Through profiling tool setup and hands-on exercises with real ML workloads, students will learn to capture and interpret basic memory metrics, recognize common bottlenecks like excessive object creation and large collection overhead, and prepare their development environment for systematic memory analysis.

涵盖的内容

4个视频2篇阅读材料1次同伴评审

This module establishes the foundation for understanding how Java manages memory in ML applications and why memory optimization is critical for performance. Learners will explore JVM architecture (heap, stack, metaspace), identify memory-intensive patterns common in ML pipelines (feature transformations, tensor manipulation, data preprocessing), and understand how garbage collection cycles impact model inference latency. Through profiling tool setup and hands-on exercises with real ML workloads, students will learn to capture and interpret basic memory metrics, recognize common bottlenecks like excessive object creation and large collection overhead, and prepare their development environment for systematic memory analysis.

涵盖的内容

3个视频1篇阅读材料1次同伴评审

This module applies comprehensive optimization techniques to build production-ready, memory-efficient ML systems. Learners will implement strategies to reduce object overhead in data pipelines through buffer pooling and primitive collections (Trove, FastUtil), tune JVM parameters for ML inference workloads including heap sizing and GC algorithm selection (G1GC, ZGC, Shenandoah), and optimize for containerized environments (Docker, Kubernetes). The capstone project guides students through an end-to-end optimization of a real ML service—from baseline profiling through data structure fixes and GC tuning to final validation—achieving measurable improvements in throughput (20-40%), latency reduction, and memory footprint while demonstrating production monitoring best practices.

涵盖的内容

4个视频1篇阅读材料1个作业2次同伴评审

位教师

Aseem Singhal
Coursera
8 门课程4,862 名学生

提供方

Coursera

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题