DeepLearning.AI
PyTorch: Techniques and Ecosystem Tools

通过 Coursera Plus 获取 10,000 多门课程的 Accessibility

DeepLearning.AI

PyTorch: Techniques and Ecosystem Tools

本课程是 PyTorch for Deep Learning 专业证书 的一部分

Laurence Moroney

位教师:Laurence Moroney

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Optimize and hyperparameter tune PyTorch models for better performance

  • Use TorchVision and Hugging Face, to efficiently process and manage image and text data, respectively

  • Build efficient training pipelines for model optimization

您将获得的技能

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

October 2025

作业

8 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累 Software Development 领域的专业知识

本课程是 PyTorch for Deep Learning 专业证书 专项课程的一部分
在注册此课程时,您还会同时注册此专业证书。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 通过 DeepLearning.AI 获得可共享的职业证书

该课程共有4个模块

This module focuses on optimizing machine learning models through systematic evaluation and hyperparameter tuning techniques. Students will learn to assess model performance using key evaluation metrics like accuracy, precision, recall, and F1-score, then apply various optimization strategies to improve their models. The course covers practical techniques including learning rate scheduling, flexible architecture design, and automated hyperparameter tuning using tools like Optuna. By the end of this module, learners will understand how to balance model performance with efficiency considerations like inference time and memory usage to select optimal models for real-world applications.

涵盖的内容

9个视频3篇阅读材料2个作业1个编程作业4个非评分实验室

This module provides a comprehensive introduction to TorchVision, PyTorch's computer vision library that offers essential tools for image processing, data handling, and model deployment. Students will explore TorchVision's core components including image transforms, preprocessing pipelines, built-in datasets, and pretrained models. The course emphasizes practical applications through hands-on experience with data augmentation techniques, transfer learning, and fine-tuning strategies. By the end of this module, learners will be equipped to leverage TorchVision's powerful utilities for real-world computer vision projects and understand how to adapt pretrained models for custom tasks.

涵盖的内容

7个视频1篇阅读材料2个作业1个编程作业4个非评分实验室

This module introduces Natural Language Processing (NLP) fundamentals using PyTorch, covering the essential pipeline from raw text to trained models. Students will learn how to transform text data into numerical representations through tokenization, tensorization, and embedding techniques, while exploring both traditional methods and modern approaches using pretrained models. The course emphasizes practical implementation skills including building custom tokenizers, working with HuggingFace transformers, and creating text classification models. By the end of this module, learners will understand how to leverage both static and dynamic embeddings, and apply transfer learning techniques to fine-tune state-of-the-art NLP models for various text processing tasks.

涵盖的内容

8个视频1篇阅读材料2个作业1个编程作业4个非评分实验室

This module focuses on optimizing machine learning workflows through efficient data handling and training techniques in PyTorch. Students will learn to identify and eliminate performance bottlenecks that can slow down model training, particularly around data loading and GPU utilization. The course covers advanced DataLoader configurations, profiling tools, and modern optimization strategies like mixed precision training and gradient accumulation. By the end of this module, learners will understand how to create high-performance training pipelines using PyTorch Lightning and other optimization tools to maximize computational efficiency.

涵盖的内容

5个视频2篇阅读材料2个作业1个编程作业3个非评分实验室

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Laurence Moroney
DeepLearning.AI
22 门课程584,186 名学生

提供方

DeepLearning.AI

从 Software Development 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题