The course "Responsible AI and Ethics" explores the ethical, social, and technical aspects of artificial intelligence (AI) and machine learning (ML). It focuses on understanding bias in both human and machine systems and provides strategies for mitigating risks. By examining key issues such as fairness, accountability, and the regulatory landscape, learners will gain essential knowledge to navigate the ethical challenges in AI. Through case studies and real-world examples, students will explore the complexities of AI implementations, assessing their impact on society and industries.


您将学到什么
Understand the sources and trade-offs of bias in both human and AI systems, and learn strategies for mitigating these biases in AI implementations.
Explore ethical frameworks for responsible AI, focusing on transparency, fairness, and accountability, and gain knowledge of laws surrounding AI.
Analyze real-world AI case studies to identify strengths and weaknesses in AI adoption, and understand the considerations for managing AI projects.
您将获得的技能
要了解的详细信息

添加到您的领英档案
9 项作业
了解顶级公司的员工如何掌握热门技能

该课程共有4个模块
In this course, you will explore the ethical, social, and technical aspects of Artificial Intelligence (AI) and Machine Learning (ML), focusing on sources of bias, risk mitigation strategies, and the regulatory landscape. You'll examine the trade-offs between human and machine biases, AI team dynamics, and emerging labor trends. The key topics of this course include responsible AI use, legal frameworks, and the impact of evaluation methods on team performance. you will gain practical insights into building fairer, more effective AI systems through case studies and discussions.
涵盖的内容
1篇阅读材料1个插件
This module introduces you to the concept of bias in Artificial Intelligence. While there has been much publicity and attention on the topic of machine bias, it often ignores human bias. In this module, you will compare human and machine bias to enable a more fair assessment of risk in AI systems. Specific attention will be paid to Machine Learning bias, algorithm bias, human bias, measurement bias, and algorithmic drift.
涵盖的内容
7个视频5篇阅读材料3个作业1个插件
This module introduces you to the complex topic of responsible AI. The common “risk-based approach” will be contrasted with the more ethical “human baseline approach.” You will also cover fiscal/performance responsibility, international regulations, privacy, and legal considerations.
涵盖的内容
8个视频3篇阅读材料3个作业3个插件
This AI case studies module offers you practical insights into AI's transformative power across various applications. You will explore successful integrations and lessons from AI's challenges, focusing on decision-making, implementation, and outcomes. Real-world examples will help you understand critical success factors and avoid potential pitfalls in AI adoption.
涵盖的内容
6个视频6篇阅读材料3个作业
位教师

从 Machine Learning 浏览更多内容
- 状态:免费试用
Fractal Analytics
- 状态:免费试用
Johns Hopkins University
- 状态:免费试用
Google Cloud
- 状态:预览
Kennesaw State University
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,