SAS
Predictive Modeling with Logistic Regression using SAS
SAS

Predictive Modeling with Logistic Regression using SAS

ęœ¬čÆ¾ēØ‹ę˜Æ SAS Statistical Business Analyst äø“äøščÆä¹¦ ēš„äø€éƒØåˆ†

Marc Huber

ä½ę•™åøˆļ¼šMarc Huber

8,128 äŗŗå·²ę³Øå†Œ

åŒ…å«åœØ Coursera Plus äø­

ę·±å…„äŗ†č§£äø€äøŖäø»é¢˜å¹¶å­¦ä¹ åŸŗē”€ēŸ„čÆ†ć€‚
4.6

(63 ę”čÆ„č®ŗļ¼‰

äø­ēŗ§ 等级
éœ€č¦äø€äŗ›ē›øå…³ē»éŖŒ
2 周 完成
在 10 å°ę—¶ 一周
ēµę“»ēš„č®”åˆ’
č‡Ŗč”Œå®‰ęŽ’å­¦ä¹ čæ›åŗ¦
ę·±å…„äŗ†č§£äø€äøŖäø»é¢˜å¹¶å­¦ä¹ åŸŗē”€ēŸ„čÆ†ć€‚
4.6

(63 ę”čÆ„č®ŗļ¼‰

äø­ēŗ§ 等级
éœ€č¦äø€äŗ›ē›øå…³ē»éŖŒ
2 周 完成
在 10 å°ę—¶ 一周
ēµę“»ēš„č®”åˆ’
č‡Ŗč”Œå®‰ęŽ’å­¦ä¹ čæ›åŗ¦

č¦äŗ†č§£ēš„čÆ¦ē»†äæ”ęÆ

åÆåˆ†äŗ«ēš„čÆä¹¦

ę·»åŠ åˆ°ę‚Øēš„é¢†č‹±ę”£ę”ˆ

作业

40 锹作业

ęŽˆčÆ¾čÆ­čØ€ļ¼šč‹±čÆ­ļ¼ˆEnglish)

äŗ†č§£é”¶ēŗ§å…¬åøēš„å‘˜å·„å¦‚ä½•ęŽŒę”ēƒ­é—ØęŠ€čƒ½

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal ēš„å¾½ę ‡

积瓯 Data Analysis é¢†åŸŸēš„äø“äøšēŸ„čÆ†

ęœ¬čÆ¾ēØ‹ę˜Æ SAS Statistical Business Analyst äø“äøščÆä¹¦ äø“é”¹čÆ¾ēØ‹ēš„äø€éƒØåˆ†
åœØę³Øå†Œę­¤čÆ¾ēØ‹ę—¶ļ¼Œę‚Øčæ˜ä¼šåŒę—¶ę³Øå†Œę­¤äø“äøščÆä¹¦ć€‚
  • å‘č”Œäøšäø“å®¶å­¦ä¹ ę–°ę¦‚åæµ
  • čŽ·å¾—åÆ¹äø»é¢˜ęˆ–å·„å…·ēš„åŸŗē”€ē†č§£
  • é€ščæ‡å®žč·µé”¹ē›®åŸ¹å…»å·„ä½œē›øå…³ęŠ€čƒ½
  • é€ščæ‡ SAS čŽ·å¾—åÆå…±äŗ«ēš„čŒäøščÆä¹¦

čÆ„čÆ¾ēØ‹å…±ęœ‰7äøŖęØ”å—

ę¶µē›–ēš„å†…å®¹

1个视频7ēÆ‡é˜…čÆ»ęę–™

In this module, you review the fundamentals of predictive modeling. Then you explore the business scenario data that is used throughout the course. Finally, you learn about common analytical challenges that you might encounter as a modeler.

ę¶µē›–ēš„å†…å®¹

15个视频1ēÆ‡é˜…čÆ»ęę–™6个作业

In this module, you investigate the concepts behind the logistic regression model. Then you learn to use the LOGISTIC procedure to fit a logistic regression model. Finally, you learn how to score new cases and adjust the model for oversampling.

ę¶µē›–ēš„å†…å®¹

18个视频1ēÆ‡é˜…čÆ»ęę–™4个作业

In this module, you learn how to deal with common problems with your predictor variables such as missing values, categorical predictors with many levels, a high number of redundant predictors, and nonlinear relationships with the response variable.

ę¶µē›–ēš„å†…å®¹

26个视频9个作业

In this module, you learn how to select the most predictive variables to use in your model.

ę¶µē›–ēš„å†…å®¹

23个视频1ēÆ‡é˜…čÆ»ęę–™12个作业

In this module, you learn how to assess the performance of your model and how to determine allocation rules that maximize profit. Finally, you learn how to generate a family of increasingly complex predictive models and how to select the best model.

ę¶µē›–ēš„å†…å®¹

30个视频1ēÆ‡é˜…čÆ»ęę–™9个作业

ę¶µē›–ēš„å†…å®¹

1ēÆ‡é˜…čÆ»ęę–™1äøŖåŗ”ē”ØēØ‹åŗé”¹ē›®

čŽ·å¾—čŒäøščÆä¹¦

å°†ę­¤čÆä¹¦ę·»åŠ åˆ°ę‚Øēš„ LinkedIn äøŖäŗŗčµ„ę–™ć€ē®€åŽ†ęˆ–å±„åŽ†äø­ć€‚åœØē¤¾äŗ¤åŖ’ä½“å’Œē»©ę•ˆč€ƒę øäø­åˆ†äŗ«ć€‚

ä½ę•™åøˆ

ęŽˆčÆ¾ę•™åøˆčÆ„åˆ†
4.7 (18个评价)
Marc Huber
SAS
2 门课程8,651 åå­¦ē”Ÿ

ęä¾›ę–¹

SAS

从 Data Analysis ęµč§ˆę›“å¤šå†…å®¹

äŗŗä»¬äøŗä»€ä¹ˆé€‰ę‹© Coursera ę„åø®åŠ©č‡Ŗå·±å®žēŽ°čŒäøšå‘å±•

Felipe M.
自 2018å¼€å§‹å­¦ä¹ ēš„å­¦ē”Ÿ
''čƒ½å¤ŸęŒ‰ē…§č‡Ŗå·±ēš„é€Ÿåŗ¦å’ŒčŠ‚å„å­¦ä¹ čÆ¾ēØ‹ę˜Æäø€ę¬”å¾ˆę£’ēš„ē»åŽ†ć€‚åŖč¦ē¬¦åˆč‡Ŗå·±ēš„ę—¶é—“č”Øå’Œåæƒęƒ…ļ¼Œęˆ‘å°±åÆä»„å­¦ä¹ ć€‚'
Jennifer J.
自 2020å¼€å§‹å­¦ä¹ ēš„å­¦ē”Ÿ
''ęˆ‘ē›“ęŽ„å°†ä»ŽčÆ¾ēØ‹äø­å­¦åˆ°ēš„ę¦‚åæµå’ŒęŠ€čƒ½åŗ”ē”Øåˆ°äø€äøŖä»¤äŗŗå…“å„‹ēš„ę–°å·„ä½œé”¹ē›®äø­ć€‚'
Larry W.
自 2021å¼€å§‹å­¦ä¹ ēš„å­¦ē”Ÿ
''å¦‚ęžœęˆ‘ēš„å¤§å­¦äøęä¾›ęˆ‘éœ€č¦ēš„äø»é¢˜čÆ¾ēØ‹ļ¼ŒCoursera ä¾æę˜Æęœ€å„½ēš„åŽ»å¤„ä¹‹äø€ć€‚'
Chaitanya A.
''å­¦ä¹ äøä»…ä»…ę˜ÆåœØå·„ä½œäø­åšēš„ę›“å„½ļ¼šå®ƒčæœäøę­¢äŗŽę­¤ć€‚Coursera č®©ęˆ‘ę— é™åˆ¶åœ°å­¦ä¹ ć€‚'

å­¦ē”ŸčÆ„č®ŗ

4.6

63 ę”čÆ„č®ŗ

  • 5 stars

    79.36%

  • 4 stars

    14.28%

  • 3 stars

    0%

  • 2 stars

    3.17%

  • 1 star

    3.17%

显示 3/63 个

RM
5

å·²äŗŽ Jun 14, 2021宔阅

SS
5

å·²äŗŽ Apr 10, 2021宔阅

Coursera Plus

é€ščæ‡ Coursera Plus å¼€åÆę–°ē”Ÿę¶Æ

ę— é™åˆ¶č®æé—® 10,000+ äø–ē•Œäø€ęµēš„čÆ¾ēØ‹ć€å®žč·µé”¹ē›®å’Œå°±äøšå°±ē»ŖčÆä¹¦čÆ¾ēØ‹ - ę‰€ęœ‰čæ™äŗ›éƒ½åŒ…å«åœØę‚Øēš„č®¢é˜…äø­

é€ščæ‡åœØēŗæå­¦ä½ęŽØåŠØę‚Øēš„čŒäøšē”Ÿę¶Æ

čŽ·å–äø–ē•Œäø€ęµå¤§å­¦ēš„å­¦ä½ - 100% 在线

åŠ å…„č¶…čæ‡ 3400 家选择 Coursera for Business ēš„å…Øēƒå…¬åø

ęå‡å‘˜å·„ēš„ęŠ€čƒ½ļ¼Œä½æå…¶åœØę•°å­—ē»ęµŽäø­č„±é¢–č€Œå‡ŗ

åøøč§é—®é¢˜