University of Michigan
More Applied Data Science with Python 专项课程
University of Michigan

More Applied Data Science with Python 专项课程

Gain advanced data analytics skills using Python. Apply analytical and machine learning techniques to extract useful information from datasets

Kevyn Collins-Thompson
Daniel Romero
VG Vinod Vydiswaran

位教师:Kevyn Collins-Thompson

包含在 Coursera Plus

深入学习学科知识
高级设置 等级

推荐体验

4 月 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入学习学科知识
高级设置 等级

推荐体验

4 月 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Build foundational analytic and machine learning techniques through data mining concepts, representing real-world data, and extraction patterns.

  • Explore unstructured data using clustering, dimensionality reduction, and topic modeling to uncover hidden patterns and improve predictive analysis.

  • Analyze network structures using NetworkX, apply network generation models, simulate diffusion processes, and detect community structures.

  • Extract meaningful information from text data by applying machine learning techniques for named entity recognition across diverse domains.

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)
最近已更新!

June 2025

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

精进特定领域的专业知识

  • 向大学和行业专家学习热门技能
  • 借助实践项目精通一门科目或一个工具
  • 培养对关键概念的深入理解
  • 通过 University of Michigan 获得职业证书

专业化 - 4门课程系列

Data Mining in Python

Data Mining in Python

第 1 门课程54小时

您将学到什么

  • Understand basic concepts, tasks, and procedures of data mining. 

  • Formulate real-world information using basic data representations: itemsets, vectors, matrices, sequences, time series, and networks. 

  • Use data mining algorithms to extract patterns and similarities from real-world datasets.

  • Calculate the importance of patterns and prepare for downstream machine-learning tasks. 

您将获得的技能

类别:Data Mining
类别:Machine Learning Methods
类别:Python Programming
类别:Data Manipulation
类别:Unsupervised Learning
类别:Data Processing
类别:Anomaly Detection
类别:Data Science
Applied Unsupervised Learning in Python

Applied Unsupervised Learning in Python

第 2 门课程31小时

您将学到什么

  • Apply unsupervised learning methods, such as dimensionality reduction, manifold learning, and density estimation, to transform and visualize data. 

  • Understand, evaluate, optimize, and correctly apply clustering algorithms using hierarchical, partitioning, and density-based methods.

  • Use topic modeling to find important themes in text data and use word embeddings to analyze patterns in text data. 

  • Manage missing data using supervised and unsupervised imputation methods, and use semi-supervised learning to work with partially-labeled datasets.

您将获得的技能

类别:Unsupervised Learning
类别:Supervised Learning
类别:Python Programming
类别:Anomaly Detection
类别:Exploratory Data Analysis
Network Modeling and Analysis in Python

Network Modeling and Analysis in Python

第 3 门课程30小时

您将学到什么

  • Understand the fundamental principles underlying network structures and apply NetworkX to analyze these principles in real-world networks.

  • Describe the practical uses of the community detection problem and use algorithms to detect and evaluate community structure in real networks.

  • Explain the value and applications of network generation models, learn their limits and strengths, and employ them to create synthetic networks.

  • Identify several basic diffusion models and implement them to run simulations using real and synthetic networks.

您将获得的技能

类别:Social Network Analysis
类别:Jupyter
类别:Probability Distribution
类别:Data Analysis
类别:Python Programming

您将学到什么

  • Develop skills to process and interpret information presented in free-text data.

  • Identify the major classes of named entity recognition (NER) and implement, with guidance, state-of-the-art machine learning techniques for NER.

  • Compare, contrast, and select between multiple machine learning and deep learning approaches for NER.

  • Explore Large Language Models and configure a Transformer-based pipeline to extract entities of interest from a text dataset.

您将获得的技能

类别:Machine Learning Methods
类别:Supervised Learning
类别:Python Programming
类别:Machine Learning Algorithms
类别:Data Manipulation
类别:Data Mining
类别:ChatGPT

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Kevyn Collins-Thompson
University of Michigan
4 门课程323,518 名学生

提供方

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题