筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
探索 NumPy 课程目录
Coursera Project Network
您将获得的技能: Pandas (Python Package), Data Analysis, Data Cleansing, Graphing, Exploratory Data Analysis, Data Manipulation, Matplotlib, Jupyter, Data Literacy, NumPy, Python Programming
- 状态:新状态:免费试用
University of Pittsburgh
您将获得的技能: Data Storytelling, Data Presentation, Plot (Graphics), Data Visualization, Matplotlib, Interactive Data Visualization, Data Visualization Software, Seaborn, Data Analysis, Graphic and Visual Design, Python Programming, Jupyter, Pandas (Python Package), Data Manipulation, NumPy
- 状态:免费试用
Howard University
您将获得的技能: 数据科学, Git(版本控制系统), 数据分析, 数学建模, 应用数学, 数学软件, 代数, Python 程序设计, NumPy, 线性代数, 软件安装, 数据可视化软件, Jupyter
- 状态:免费试用
您将获得的技能: Artificial Intelligence and Machine Learning (AI/ML), Exploratory Data Analysis, Generative AI, Keras (Neural Network Library), NumPy, Data Processing, PyTorch (Machine Learning Library), Predictive Modeling, Matplotlib, Data Analysis, Generative Model Architectures, Development Environment, Pandas (Python Package), Image Analysis, Deep Learning, Classification And Regression Tree (CART), Artificial Neural Networks, Artificial Intelligence, Machine Learning, Data Science
Coursera Project Network
您将获得的技能: Pandas (Python Package), Data Manipulation, Data Analysis, NumPy, Python Programming
- 状态:免费试用
Illinois Tech
您将获得的技能: Statistical Analysis, Data Analysis, Data Science, Statistical Programming, Statistical Machine Learning, Statistical Methods, Statistical Modeling, Machine Learning Algorithms, Applied Machine Learning, Regression Analysis, Probability & Statistics, Advanced Analytics, Machine Learning, Bayesian Statistics, Statistical Inference, Supervised Learning, Predictive Modeling, Classification And Regression Tree (CART), Unsupervised Learning, Feature Engineering
- 状态:免费试用
Johns Hopkins University
您将获得的技能: Electronics, Systems Of Measurement, Data Processing, Data Science, Electronic Components, Data Cleansing, Data Analysis Software, Statistical Methods, Analytical Skills, NumPy, Real Time Data, Regression Analysis, Mathematical Modeling
- 状态:预览
DeepLearning.AI
您将获得的技能: Deep Learning, Artificial Neural Networks, Supervised Learning, Computer Vision, Python Programming, Machine Learning, NumPy, Performance Tuning, Linear Algebra, Calculus
- 状态:免费试用
Illinois Tech
您将获得的技能: Machine Learning Algorithms, Statistical Analysis, Data Visualization, Data Analysis, Exploratory Data Analysis, Data Cleansing, Analytics, Machine Learning, Data Science, Regression Analysis, Data Manipulation, Data Mining, Statistical Modeling, Python Programming, Feature Engineering, Scikit Learn (Machine Learning Library), Classification And Regression Tree (CART), Decision Tree Learning
- 状态:新状态:预览
您将获得的技能: Data Integration, Data Import/Export, NumPy, Data Wrangling, Data Manipulation, Pandas (Python Package), Data Pipelines, Data Transformation, Extract, Transform, Load, Data Cleansing
- 状态:预览
Northeastern University
您将获得的技能: Data Storytelling, Statistical Visualization, Data-Driven Decision-Making, Data Visualization Software, Data Mining, Exploratory Data Analysis, Data Cleansing, Data Manipulation, Graphing, Big Data, Data Transformation, Programming Principles, Python Programming, Data Structures, NumPy, Scripting
- 状态:免费试用
Duke University
您将获得的技能: Pandas (Python Package), Data Cleansing, Data Manipulation, NumPy, Query Languages, Data Integration, Python Programming, Data Import/Export, Data Analysis, Debugging
总之,以下是 10 最受欢迎的 numpy 课程
- أساسيات تحليل البيانات باستخدام بايثون وباندا: Coursera Project Network
- Data Visualization Fundamentals in Python: University of Pittsburgh
- 线性代数和 Python 简介: Howard University
- Keras Deep Learning & Generative Adversarial Networks (GAN): Packt
- Master Data Analysis with Pandas: Learning Path 1 (Enhanced): Coursera Project Network
- Statistical Learning: Illinois Tech
- Using Sensors With Your Raspberry Pi: Johns Hopkins University
- 신경망 및 딥 러닝: DeepLearning.AI
- Data Preparation and Analysis: Illinois Tech
- From Raw to Ready: Data Preparation in Python: Coursera