In “Data Mining in Python,” you will learn how to extract useful knowledge from large-scale datasets. This course introduces basic concepts and general tasks for data mining. You will explore a wide range of real-world data sets, including grocery store, restaurant reviews, business operations, social media posts, and more.
通过 Coursera Plus 解锁访问 10,000 多门课程。开始 7 天免费试用。


您将学到什么
Understand basic concepts, tasks, and procedures of data mining.
Formulate real-world information using basic data representations: itemsets, vectors, matrices, sequences, time series, and networks.
Use data mining algorithms to extract patterns and similarities from real-world datasets.
Calculate the importance of patterns and prepare for downstream machine-learning tasks.
您将获得的技能
要了解的详细信息

添加到您的领英档案
June 2025
20 项作业
了解顶级公司的员工如何掌握热门技能

积累特定领域的专业知识
- 向行业专家学习新概念
- 获得对主题或工具的基础理解
- 通过实践项目培养工作相关技能
- 获得可共享的职业证书

该课程共有4个模块
Welcome to Module 1—an Introduction to Data Mining! We will begin this module with an introduction to the basic concepts, views, and tasks of data mining. We will focus on how to formulate real world information as different data representations (e.g., itemsets, vectors, sequences, time series, networks, data streams, etc.). Then, we will elaborate on two basic functionalities of data mining: patterns and similarity. We will learn how they can be used to build more complex data mining tasks. Let’s get started!
涵盖的内容
12个视频9篇阅读材料4个作业1个编程作业1个讨论话题
Welcome to Module 2—Mining Itemset Data! In this module, we will learn how to represent data as itemsets and the basic data mining operations with itemset data. We will focus on how to extract frequent patterns from a collection of itemsets, how to evaluate the interestingness of itemset patterns, and how to compute Jaccard similarity between two itemsets. Let’s get started!
涵盖的内容
8个视频5篇阅读材料5个作业3个编程作业
Welcome to Module 3—Mining Vector and Matrix Data! We are halfway through our course on Data Mining! In this module, we will learn in how to mine data represented as vectors and matrices. We will focus on how to represent data as vectors, different similarity/distance metrics of vector data, what are the patterns in matrix data, and how to apply these concepts to real world scenarios. Let’s get started!
涵盖的内容
11个视频3篇阅读材料6个作业4个编程作业
Welcome to Module 4—Mining Sequences, our last course module!! We will conclude our course by learning how to represent data as sequences. We will focus on commonly used sequential patterns (ngrams and skipgrams), distance measures for sequence data (Edit Distance and Shingling), and how they can be applied to real world tasks. Let’s get started!
涵盖的内容
10个视频3篇阅读材料5个作业4个编程作业
获得职业证书
将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。
位教师

从 Data Analysis 浏览更多内容
状态:免费试用University of Michigan
状态:免费试用University of Michigan
状态:免费试用University of Michigan
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,




